
Cluster Sensing Superpixel and Grouping

Rui Li∗ Lu Fang†

Abstract

Superpixel algorithms have shown significant potential

in computer vision applications since they can be used to

accelerate other computationally demanding algorithms.

However, in contrast to the original purpose of superpixels,

many upper layer methods still suffer from computational

problems when incorporating superpixel for speedup. In

this paper, we present a cluster sensing superpixel (CSS)

method to efficiently generate superpixel bricks. Based on

the insight of pixel density, cluster centers generally have

properties of representativeness (i.e., local maximal pixel

density) and isolation (i.e., large distance from other cluster

centers). Our CSS method efficiently identifies ideal cluster

centers via utilizing pixel density. We also integrate super-

pixel cues into a bipartite graph segmentation framework

and apply it to microscopy image segmentation. Extensive

experiments show that our CSS method achieves impres-

sive efficiency, being approximately five times faster than

the state-of-the-art methods and having comparable per-

formance in terms of the standard metrics. Application on

microscopy image segmentation also benefits our efficient

implementation.

1. Introduction

Superpixel representation is becoming increasingly pop-

ular in various computer vision applications, e.g., segmen-

tation [2, 13], stereo matching [21, 22], saliency detection

[4, 20, 26], tracking [23, 25] etc. There are two primary

reasons for the performance gains of superpixel represen-

tation. The first is superpixels that reduce the computation-

al primitives significantly without obvious information loss,

and the second is that regular shape bricks preserve the main

connection relationships of images. Many computationally

expensive tasks benefit from these attractive properties, and

improve the efficiency of algorithm[11] or achieve perfor-

mance improvements[5].

To further improve superpixel performances, many nov-

1alr@mail.ustc.edu.cn, University of Science and Technology of Chi-

na, Hefei, Anhui, China
2eefang@ust.hk, correspondence author, Hong Kong University of Sci-

ence and Technology, Hong Kong, China

el methods have been proposed, for example, graph-based

methods [7, 12], spectral clustering [17], mean shift[6], k-

means clustering [1, 10] and energy maximization [19]. Al-

though these previous arts achieve satisfactory results, most

of them have difficulty striking a good balance between

real-time level efficiency and regular shape. Since reduc-

ing the computational burden is essential to superpixel, the

efficiency is extremely critical for superpixels, and irregular

shape for segmentation will lead to vagueness for the origi-

nal spatial relationship.

Inspired by the idea in[16], the idea of cluster center-

s can be described as high similarity to local others (i.e.,

representativeness) and as having a relatively large distance

from higher density points (i.e., isolation). We denote pix-

el density as the level of pixel aggregation or the similarity

of the center to its neighboring pixels. In contrast to the

pixel values, pixel density can reflect the pixel concentra-

tion in the local region and can be utilized as the metric

to identify image components. For example, the pixels n-

ear image boundaries generally have the comparatively low

density value since boundaries separate two semantic re-

gions with very different color distribution, leading to the

a low-density trajectory in the density channel; pixels in the

smooth regions are similar to the local others with compar-

atively high and smooth density values. Therefore, density

channel can be utilized as the a metric to identify the cluster

centers, boundaries, smooth regions, noise pixels etc. Since

nature image is piecewise smooth, the conventional RGB

or Lab color space cannot distinguish the spatial location of

pixel (e.g., close to the boundary pixels, central region of

smooth patch) or the relationship to local others (e.g., sim-

ilarity). However, these information is crucial to superpix-

els for selecting the seeds or guiding the searching clusters.

Fortunately, the pixel density provides a new way to discov-

er the spatial-dependant information.

In this paper, our main technical contributions mainly are

the following: 1) We reveal the insight of the pixel densi-

ty and show that it can be utilized as a powerful metric to

discover the low-level components. 2) We propose a cluster

sensing superpixel (CSS) method that efficiently searches

local optimal cluster centers by pixel density and aggregates

pixels via kernelized distance metrics. 3) We also integrate

the superpixel cues into the bipartite graph framework and

apply it to the microscopy image segmentation. Moreover,

46

our CSS not only achieves regular shaped superpixels and

comparable performance with previous arts, but also can

run at approximated 60 fps (five times faster than the previ-

ous methods) for modest-size images.

2. Related Works

In this section, we review the state-of-the-art superpixel

methods, more detailed surveys can refer to [1, 2].

Graph-based methods address superpixel or segmenta-

tion problems as minimizing cut or object function on graph

[8]. Early work [17] proposed the normalized cut to find the

global optimum for segmentation via spectral clustering. S-

ince normalize cut involves the computationally expensive

eigen decomposition, many accelerating methods have been

proposed for improving this novel but computationally de-

manding algorithm, e.g., [3, 18, 13]. [7] proposed an effi-

cient graph cut method (known as FH) to solve over seg-

mentation problem. Despite its efficiency and impressive

boundary adherence, FH lacks spatial constraint and tends

to overlap with multiple objects. For more visually pleasing

superpixel algorithms, ERS[12] integrates an entropy rate

term and a balanced term for encouraging smoothness and

boundary adherence, but also this leads to a high computa-

tional time (≈ 2s).

Cluster-based methods treat superpixel problem as find-

ing clusters in the feature space. Due to the introduction

of spatial constraints for clustering process, cluster-based

methods generally produce regular and visual pleasing seg-

mentation, e.g., SLIC[1] and LSC[10], which are widely-

used for supporting upper layer algorithms. SLIC is one of

the most popular superpixel methods due to its simplicity

and effectiveness; however, SLIC is not efficient enough to

accelerate real-time applications. LSC[10] maps tradition-

al pixel values to a specific feature space via kernel func-

tion and yields a globally optimal solution, but the kernel

function also increases the computational burden. Bergh

et al. [19] proposed the very efficient SEEDS that adopts a

hill-climbing method to optimize the proposed energy func-

tion as well as generate homogeneous segmentations. How-

ever, SEEDS generally produce superpixels with irregular

shapes, which have difficulty becoming semantic bricks to

represent images compactly. For overcoming the drawback

of SEEDS, [24] added a spatial regular term for generating

more regular superpixels. Despite the board family of su-

perpixel methods that solve problem from different angles,

e.g., NCut[17], temporal consistency [15], lattices[14] and

geometric information [9], most of them still do not well

handle the computational problem.

In contrast to most previous arts, our CSS method ad-

dresses superpixel problem as searching cluster centers

in image space by exploring density peaks. Compared

to the most widely-used superpixel methods SLIC[1] and

SEEDS[19], our CSS method achieves regular and homo-

geneous superpixels, with an impressive efficiency of 60

fps (20 times faster than SLIC and five times faster than

SEEDS), and can be used as an efficient replacement for

the state-of-the-art superpixel methods.

3. Cluster Sensing Superpixel Method

Clustering-based superpixel methods address superpix-

el problems as searching representative pixels as centers[1,

10]. Rodriguez and Laio [16] introduced the novel idea that

cluster centers are highly similar to local others (representa-

tiveness) and have relatively large distance from other high-

er density points (isolation). Thus, representativeness and

isolation can be utilized as robust metrics to identify cluster

centers and suppress outliers. Based on the idea above, we

first introduce our density channel, and then detail our CSS.

3.1. Density Channel

We define pixel density as the number of pixels that are

close to a given pixel in the feature space around the local

region. As illustrated Fig. 1, pixel density can reflect many

important image structures (e.g. edge, smooth regions, tex-

ture etc.) and removes irrelevant information, e.g., noise or

color. Many perceptual grouping methods, e.g., superpixel,

edge detection, involve in dividing an image into semantic

parts such as edges or object components. However, tra-

ditional simple pixel-level features can not effectively dis-

tinguish these components since nature images are compli-

cated and generally have many patterns for different types

of regions. Fortunately, the density channel is a powerful

means to identify different patterns, even when those pat-

terns are diverse on a simple color space.

Fig. 1(b) shows that smooth regions generally have com-

paratively high density values with smooth distribution. As

the illustration in Fig. 1(d) shows density channels have

comparatively low-density values on both edges and image

noise pixels since edges generally have distinct color distri-

bution on two different sides of boundary and noise pixels

are isolated points with a large color distance from neigh-

boring region. For different texture regions, the color distri-

butions generally are various. But, as the illustration in Fig.

1(c) shows the texture in the density channel shows simi-

lar characteristics to rough distribution even when the col-

or distribution is significantly different. Thus, good cluster

centers for superpixels should satisfy several requirements:

1) highly represent the local region, 2) isolate to other clus-

ter centers and 3) avoid locating in boundaries or noise pix-

els. We adopt the density channel for searching those pos-

sible candidates that satisfy the above three requirements.

We formulate the pixel density mathematically as:

ρ(p) =
∑

q∈Np

δ(p, q), (1)

47

(a)

(b) (c) (d)

Figure 1. The examples of density channel and the region patterns. (a) shows the example image (left) and corresponding density channel

(right). (b), (c), (d) illustrate the examples of smooth region, texture and edge patterns with corresponding density channel respectively.

where ρ(p) is the density value of p, Np is the neighboring

pixel set around p and δ(·, ·) is the similarity function.

We measure the similarity of two pixels by mapping the

Euclidean distance to the kernel space (Gaussian). Our pix-

el distance consists of a spatial weighted term and a col-

or weighted term. The color weighted term considers the

color similarity of two pixels and the spatial weighted ter-

m enhances the influence of nearby pixels and suppress the

weights of farther pixels. The gaussian kernel maps two

terms to [0, 1], which is consistent with the practical mean-

ing of pixel density. Thus, the spatial weighted term ds and

the color weighted term dc are:

ds(p, q) = e
−

Ds(p,q)2

2δ2s , (2)

dc(p, q) = e
−

Dc(p,q)
2

2δ2c , (3)

where Ds and Dc denote the Euclidean distance on the spa-

tial and color feature space respectively. δs and δc are the

variance of Gaussian kernel and control the influence of the

spatial and color weight. Thus, Eqn. 1 can be formulated

as:

ρp =
∑

q∈Np

ds(p, q)dc(p, q). (4)

The computational complexity of the density channel is

O(|Np|N), where |Np| is the number of pixels in Np and

N is the total pixel in the image. For computational effi-

ciency, we set Np to be the small size (e.g., (7, 7)), but a

large-size Np does not significantly affect the density value

due to the large spatial distance pixels having less influence

for density computing.

3.2. Cluster Center Searching and Aggregation

We compute the density value for each pixel by Eqn.

4 and generate the density channel. We randomly sam-

ple some pixels as initial candidates, and then iteratively

move the candidates to the highest density value position

on search region (e.g., 3 × 3). The iterations repeat until

all the cluster centers converge to local maximums. As il-

lustrated in Fig. 2, cluster center candidates start moving

from the initial red points and iteratively find and move to

the maximal positions in the local search region, which are

blue points, at the neighboring region on the density chan-

nel. Green points are the local maximums on the density

channel, it is possible to move to the same local maximum

point to form a cluster, such as point 1 and point 2 in Fig.

2. Point 3 has different trajectory that forms another new

cluster.

THe above searching scheme finds the cluster center-

s based on the density channel, and also satisfies the re-

quirements of the cluster centers. First, the candidate pixels

will move to the local optimum in density map, which has

48

Figure 2. The illustration of searching scheme on density channel.

1,2,3 are the cluster center candidates that start from initial point

(red) and iteratively update current position (Blue) until reach the

local optimal position (Green).

the highest density (most representative) in the local region-

s. Second, density peaks in the nature image generally are

isolated pixels, so our cluster centers will have a compara-

tively large distance from each others. Third, the boundary

and noise pixels have low density, and our density search

scheme can avoid falling into outlier pixels. Moreover, our

cluster center searching strategy is efficient, in that only a

small number of candidates are taken into consideration.

Similar to SLIC[1], we aggregate pixels based on the

similarity between cluster centers and neighboring pixel-

s. We define our similarity metric by adopting the spatial

weighed term ds and color weighed term dc in Eqn. 2,

d(p, q) = dc(p, q) + λds(p, q), (5)

where d(p, q) is the overall similarity of p and q and λ ad-

justs the influence between dc and ds for controlling com-

pactness. But, in contrast to SLIC, our pixel aggregation

scheme does not require the adjustment of cluster centers

like k-means. Like other superpixel methods [1, 7] that do

not enforce the connectivity in superpixel, a post-processing

procedure is used that merges the small discontinued com-

ponents into adjacent large superpixels.

3.3. Segmentation Control

Like other superpixel methods require controlling the

number of superpixel, our CSS method accept the user in-

put of desired segmentations. We first divide the image into

grids, and the number of grids is approximate to the desired

number of superpixels. Then, we randomly sample the pix-

els for each grid as the initial position of the cluster cen-

ter candidates. Finally, the cluster centers will iteratively

update to the local optimal positions via proposing density

channel. In general, the total number of cluster centers will

be slightly less than the original input sampling pixels, since

some cluster center candidates will convergence to same lo-

cal optimal positions. Thus, the number of cluster center

can be controlled by the user input. Since the image space

may contain high frequency context, the density channel al-

so contains many local optimal density peaks. But, in the

initial sampling procedure, only one candidate pixel in the

local grid is sampled. Thus, for each local region, only one

cluster center is preserved, and other local optimal peaks

will be ignored. In smooth region, the density channel will

be also smooth, but the position of cluster centers are not as

critical as clusters that near object boundary or object com-

ponents.

3.4. Bipartite Graph Grouping

Given a set of superpixels and pixels, grouping is done

to divide superpixel or pixel sets into k subsets that include

superpixels or pixels. Following [11], superpixels can be u-

tilized as powerful cues for grouping problems and improve

the performance of segmentation in terms of accuracy and

efficiency. But different superpixel algorithms have differ-

ent segmentation appetites; e.g., [7] favors generating high-

ly flexible superpixels, but tends to overlap with multiple

objects and the distribution of superpixel size is unbalanced.

In contrast to [7], for superpixel methods with strong spatial

and regular constraints (e.g., CSS), superpixels are regular

and have similar size to each other. The pros and cons are

also obvious, the former approach tends to discover global

shapes but fails to identify small components, and the latter

can easily discover local small components but fails to cap-

ture global shapes. The combination of the two different su-

perpixel methods will have the complementary effects. We

integrate our CSS method into multiple superpixel grouping

frameworks in [11]. We test our segmentation method for

both nature image segmentation for the BSDS500 dataset[2]

is shown in Fig. 3 and microscopy image segmentation as

shown in Fig. 5.

4. Experiments and Applications

We evaluate our superpixel method based on widely-

used metrics: boundary recall (BR), corrected under-

segmentation error (CUE), achievable segmentation accu-

racy (ASA) and frame per seconds (FPS). BR evaluates the

ability of superpixel discovering object boundaries. ASA

measures the upper bound performance of superpixel adopt-

ing output superpixels as the basic processing unit for seg-

mentation. CUE measures the ability of superpixel overlap-

ping only on one object component. Several state-of-the-art

methods are selected for comparisons: SLIC[1], LSC[10],

TP[9], SEEDS[19].

In the experiment, we set σc = 150, σs = 60, λ = 0.1
as fixed parameters to compare performance. We compute

49

(a) Original Images (b) CSS Results (600) (c) CSS Results (1000) (d) Grouping Results

Figure 3. Segmentation results for microscopy images. We illustrate superpixel segmentation in the second and the third columns, and

grouping results based on superpixel cues are shown in the fourth column. We adopt our CSS method for bipartite graph grouping [11].

the density channel in a (7, 7) patch for balancing efficiency

and performance. All the experiments are conducted on an

i3-2130 @ 3.4GHz CPU.

4.1. Comparison with the Stateoftheart Methods

We compare our CSS method with other state-of-the-art

methods from various aspects. Fig. 4 shows the comparison

in terms of BR, CUE, ASA and FPS between the state-of-

the-art methods. Fig. 6 shows a visual comparison between

several competing methods and CSS.

TP[9] achieves regular and smooth superpixel segmenta-

tion with a clear boundary (Fig. 6(a)); however, TP achieves

almost the worst boundary adherence in terms of BR (Fig.

4(a)) since it does not fully utilize the color information for

superpixel generation. Moreover, TP is the slowest among

all compared methods. SLIC[1] is one of the most widely-

used superpixel methods due to its simple implementation

and regular shape superpixel with comparable segmentation

performance. While SLIC is popular, it rarely support real-

time applications because it generally provides 3 ∼ 5 fps

to generate superpixels for a single image. SEEDS[19] is

fast and achieves state-of-the-art efficiency. However, while

SEEDS achieves good segmentation performance, it meets

the drawback that it generates complicated boundaries and

diverse shapes, which favor an adhesive object boundary but

fail to represent objects uniformly (see Fig. 6(c)). More-

over, SEEDS cannot provide explicit control over granular-

ity of superpixel leading to various parameters for images

with different resolution1. LSC[10] provides uniform su-

1As illustration of Fig. 4(d), SEEDS crash when image resolution of

1920× 1080 since appropriate parameters is difficult to find.

50

perpixel and a good adherence to image boundary. While

LSC is similar to SLIC, it differs in the kernel function,

LSC achieves similar superpixel shapes and behavior in the

smooth region, but also sensitive to texture region that pro-

vide a complicated superpixel boundary. Moreover, LSC is

much slower than SLIC since kernel function is used, and

runs for approximately 1s for a modest-size image.

As Fig. 4 illustrates, our CSS achieves comparable per-

formance in terms of several metrics and significant effi-

ciency gain compared with other previous arts. In contrast

to most state-of-the-art methods that aggressively adhere to

object boundary [12, 19] and fail to generate regular shape

superpixel, our CSS is able to generate visually pleasing

superpixels that generally have a regular shape and clear

boundary, and are also insensitive to the texture region.

Efficiency Comparison In this section, we compare our

CSS method with previous arts in terms of efficiency as

shown in Fig. 4(d). SEEDS[19] is the most efficient super-

pixel method among the previous arts and achieves approx-

imately 40∼50 ms (nearly real-time) for a single image in

the BSDS500 dataset. And the most widely-used SLIC[1]

achieves approximate 0.5s for a single image and its kernel-

ized version implementation, LSC[10], requires more than

1s to process a similar-size image. Our CSS outperforms

these previous arts in terms of efficiency and can process

modest-size images in real-time, which provides solution

for supporting other computationally demanding problems,

e.g., real-time tracking or real-time detection. For testing

images in the BSDS500[2], our CSS takes approximately

15 ms for a single image, 5∼10 ms for generating the den-

sity channel and 4∼6 ms for pixel aggregation. Thus, our

CSS can be a good replacement for generating superpixel

efficiently.

We also compare the computational complexity of the-

state-of-the-art methods. In fact, SEEDS, SLIC, and LSC

have a computational complexity of O(N), where N is the

number of pixels. The computational complexity of our C-

SS is also O(N). For some early methods, the computa-

tional complexity is comparatively high, e.g., for ERS[12],

it is O(N2 lgN).

4.2. Robustness Evaluation

As illustrated in Fig. 7, we test the robustness of our CSS

by adjusting σs, σc and λ. σc and σs adjust the measure-

ments of the color similarity and spatial similarity. Large

σc or σs indicates small strictness of distance for similari-

ty measurement and vice versa. λ is the tradeoff parameter

for adjusting the weight of color term and spatial term, and

it controls the compactness of superpixels, as a large λ en-

courages compact superpixel and a small λ encourages bet-

ter color homogeneity. Fig. 7 shows that our CSS achieves

stable segmentation when σc, σs and λ change significantly,

which is critical for the practical applications.

Bipartite Graph Grouping We compare the grouping re-

sults when using different superpixels algorithms in Fig. 5.

We adopt the bipartite graph segmentation method[11] to u-

tilize superpixel for grouping tasks. We test different types

of superpixels as initial inputs, namely, CSS, Mean Shift [6]

and the combination of two methods CSS + Mean Shift. As

illustrated in Fig. 5, when integrating CSS and Mean Shift

together as the input of the bipartite graph grouping, the two

different superpixels achieve the effect of complementari-

ty and yield better visual segmentation results. Moreover,

due to the introduction of superpixel cues, the segmentation

methods are also efficient, and only take approximately 5s

for a single image of 800× 600.

Microscopy Image Segmentation Many popular super-

pixel and segmentation methods become increasingly ex-

pensive in segmentation tasks, especially in large resolution

images. For microscopy images, e.g., mitochondria, cel-

l images from electron micrographs (EM), the resolution is

comparatively large and directly downsampled EM images

will affect accuracy for further applications and analysis.

We adopt CSS to generate a set of superpixels for reduc-

ing the computational primitives, and then utilize superpix-

el cues for grouping via the approach in [11]. In Fig. 3, we

illustrate the example results of superpixels and segmenta-

tions including the original image, superpixel segmentation

results with different numbers of superpixels and final seg-

mentation results.

Failure Cases Our CSS achieves competing performance

in comparatively large number of superpixel. However,

when the desired number of superpixel is comparatively s-

mall (e.g., <100), our CSS suffers degradation since the dis-

tance metrics is less effective when spatial distance is large.

Moreover, our CSS favors regular shape of superpixels, but

when desired segmentations are irregular, superpixel seg-

mentation will be also less effective.

5. Conclusion

In this paper, we propose an efficient cluster sensing su-

perpixel (CSS) method that addresses the superpixel prob-

lem as searching the cluster centers via the proposed density

channel and aggregating pixels via kernelized distance met-

rics. We also empirically compare several kernel functions

for generating the density channel and measuring the simi-

larity between two pixels. Extensive experiments show that

our method achieves competitive performance with several

state-of-the-arts methods. Despite the effectiveness of our

CSS, we also shows that our CSS method is able to run

in real-time in modest-size images and outperforms other

51

100 200 300 400 500 600 700 800 900 1000
Number of Superpixels

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Bo

un
da

ry
 R

ec
al

l

CSS
LSC
SEEDS
SLIC
TP

(a) BR

100 200 300 400 500 600 700 800 900 1000
Number of Superpixels

0.0

0.1

0.2

0.3

0.4

0.5

Co
rr

ec
te

d
Un

de
rs

eg
m

en
ta

tio
n

Er
ro

r

CSS
LSC
SEEDS
SLIC
TP

(b) CUE

100 200 300 400 500 600 700 800 900 1000
Number of Superpixels

0.5

0.6

0.7

0.8

0.9

1.0

Ac
hi

ev
ab

le
 S

eg
m

en
ta

tio
n

Ac
cu

ra
cy

CSS
LSC
SEEDS
SLIC
TP

(c) ASA

320×240 640×480 480×320 960×540 1920×1080
Image Size

10-2

10-1

100

101

102

Av
er

ag
e

Pr
oc

es
si

ng
 T

im
e

(s
)

CSS
SEEDS
SLIC
TP
LSC

(d) FPS

Figure 4. Performance benchmark on BSDS500[2] in terms of BR, CUE, ASA and FPS.

(a) Original Image (b) CSS (c) Mean Shift (d) Grouping (CSS) (e) Grouping (MS) (f) Grouping(CSS+MS)

Figure 5. The visual results of adopting the bipartite graph grouping for segmentation. (a) original image, (b) the superpixel results of

CSS, (c) Mean Shift results [6], (d) the segmentation results based on CSS, (e) segmentation results based on Mean Shift, (f) segmentation

results integrated CSS and Mean Shift.

52

(a) TP[9] (b) SLIC[1] (c) SEEDS[19] (d) LSC[10] (e) CSS

Figure 6. Visual comparison between several state-of-the-art methods: TP[9], SLIC[1], SEEDS[19] and LSC[10] at the superpixel number

of 400, 600, 800, 1000 respectively (from top to bottom).

(a) σc = 150, σs = 60, λ = 0.1 (b) σc = 150, σs = 40, λ = 0.1 (c) σc = 150, σs = 80, λ = 0.1 (d) σc = 120, σs = 60, λ = 0.1

(e) σc = 180, σs = 60, λ = 0.1 (f) σc = 150, σs = 60, λ = 0.05 (g) σc = 150, σs = 60, λ = 0.15 (h) σc = 150, σs = 60, λ = 0.2

Figure 7. Superpixel results for different σc, σs and λ at 500 superpixels.

state-of-the-art methods in different resolutions. Moreover,

we also integrate our CSS into the bipartite graph segmen-

tation framework for microscope image segmentation.

Acknowledgements This work is supported in part by

Natural Science Foundation of China (NSFC) under con-

tract No. 61303151, in part by the GRF 16211615.

53

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Süsstrunk. Slic superpixels compared to state-of-

the-art superpixel methods. PAMI, 2012. 1, 2, 4, 5, 6,

8

[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Con-

tour detection and hierarchical image segmentation.

PAMI, 2011. 1, 2, 4, 6, 7

[3] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques,

and J. Malik. Multiscale combinatorial grouping. In

CVPR, 2014. 2

[4] M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and

S. Hu. Global contrast based salient region detection.

PAMI, 2015. 1

[5] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr,

and S.-M. Hu. Global contrast based salient region

detection. PAMI, 2014. 1

[6] D. Comaniciu and P. Meer. Mean shift: A robust ap-

proach toward feature space analysis. PAMI, 2002. 1,

6, 7

[7] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient

graph-based image segmentation. IJCV, 2004. 1, 2, 4

[8] V. Kolmogorov and R. Zabin. What energy functions

can be minimized via graph cuts? PAMI, 2004. 2

[9] A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet,

S. Dickinson, and K. Siddiqi. Turbopixels: Fast su-

perpixels using geometric flows. PAMI, 2009. 2, 4, 5,

8

[10] Z. Li and J. Chen. Superpixel segmentation using lin-

ear spectral clustering. In CVPR, 2015. 1, 2, 4, 5, 6,

8

[11] Z. Li, X.-M. Wu, and S.-F. Chang. Segmentation using

superpixels: A bipartite graph partitioning approach.

In CVPR, 2012. 1, 4, 5, 6

[12] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellap-

pa. Entropy-rate clustering: Cluster analysis via max-

imizing a submodular function subject to a matroid

constraint. PAMI, 2014. 1, 2, 6

[13] M. Maire and S. X. Yu. Progressive multigrid eigen-

solvers for multiscale spectral segmentation. In ICCV,

2013. 1, 2

[14] A. Moore, S. Prince, J. Warrell, U. Mohammed, and

G. Jones. Superpixel lattices. In CVPR, 2008. 2

[15] M. Reso, J. Jachalsky, B. Rosenhahn, and J. Oster-

mann. Temporally consistent superpixels. In ICCV,

2013. 2

[16] A. Rodriguez and A. Laio. Clustering by fast search

and find of density peaks. Science, 2014. 1, 2

[17] J. Shi and J. Malik. Normalized cuts and image seg-

mentation. PAMI, 1997. 1, 2

[18] C. J. Taylor. Towards fast and accurate segmentation.

In CVPR, 2013. 2

[19] M. Van den Bergh, X. Boix, G. Roig, and L. Van Gool.

Seeds: Superpixels extracted via energy-driven sam-

pling. IJCV, 2015. 1, 2, 4, 5, 6, 8

[20] Y. Xie, H. Lu, and M.-H. Yang. Bayesian saliency via

low and mid level cues. TIP, 2013. 1

[21] K. Yamaguchi, D. McAllester, and R. Urtasun. Robust

monocular epipolar flow estimation. In CVPR, 2013.

1

[22] K. Yamaguchi, D. McAllester, and R. Urtasun. Ef-

ficient joint segmentation, occlusion labeling, stereo

and flow estimation. In ECCV. 2014. 1

[23] F. Yang, H. Lu, and M.-H. Yang. Robust superpixel

tracking. TIP, 2014. 1

[24] J. Yao, M. Boben, S. Fidler, and R. Urtasun. Real-time

coarse-to-fine topologically preserving segmentation.

In CVPR, 2015. 2

[25] Y. Yuan, J. Fang, and Q. Wang. Robust superpixel

tracking via depth fusion. TCSVT, 2014. 1

[26] W. Zhu, S. Liang, Y. Wei, and J. Sun. Saliency opti-

mization from robust background detection. In CVPR,

2014. 1

54

