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Fig. 1. Our light field segmentation method facilities segmentation of fine structures in light fields with complex occlusions and difficult textures. Here we
show from left to right: two source light fields, the achieved segmentation, mean color regions, and object selection (which requires additional user input).
We also show the EPIs for different horizontal and vertical slices.

Image segmentation is an important first step of many image processing,
computer graphics, and computer vision pipelines. Unfortunately, it remains
difficult to automatically and robustly segment cluttered scenes, or scenes
in which multiple objects have similar color and texture. In these scenarios,
light fields offer much richer cues that can be used efficiently to drastically
improve the quality and robustness of segmentations.

In this paper we introduce a new light field segmentation method that
respects texture appearance, depth consistency, as well as occlusion, and
creates well-shaped segments that are robust under view point changes.
Furthermore, our segmentation is hierarchical, i.e. with a single optimiza-
tion, a whole hierarchy of segmentations with different numbers of regions
is available. All this is achieved with a submodular objective function that
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allows for efficient greedy optimization. Finally, we introduce a new tree-
array type data structure, i.e. a disjoint tree, to efficiently perform submod-
ular optimization on very large graphs. This approach is of interest beyond
our specific application of light field segmentation.

We demonstrate the efficacy of our method on a number of synthetic and
real data sets, and show how the obtained segmentations can be used for
applications in image processing and graphics.

CCS Concepts: •Computingmethodologies→ Image processing; Com-
putational photography.
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1 INTRODUCTION
Segmentation is a canonical problem in visual computing, and a key
component of many techniques used in computer graphics, image
processing, and computer vision (Fig. 1). Many previous works ad-
dress segmentation problems by splitting 2D image regions based
on low-level similarity [Achanta et al. 2012; Felzenszwalb and Hut-
tenlocher 2004; Liu et al. 2011], mid-level structure [Arbelaez et al.
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2011; Khan et al. 2015, 2017], or high-level semantic meaning [Long
et al. 2015]. State-of-the-art superpixel segmentation methods can
achieve strong results on most general cases. Despite this progress,
there are still many difficult corner cases that will lead to segmen-
tation failure, e.g., when an object has a similar appearance to the
background, when occlusion occurs, or when an object has a com-
plex shape. Under these challenging situations, the usual object pri-
ors (appearance similarity, contrast, regular shape) are insufficient,
and 2D image segmentation can fail as a result. 3D scene informa-
tion can be used as a powerful evidence to further remove segmen-
tation ambiguity. However, 2D image segmentation approaches nat-
urally lack 3D scene information, and the inference of 3D informa-
tion from 2D images is challenging, inconvenient, and expensive.
In recent years, 4D light fields [Levoy and Hanrahan 1996] have

become more popular for many tasks, as they not only encode spa-
tial information but also parallax, and can be recorded with special
cameras [Ng et al. 2005; Venkataraman et al. 2013; Wilburn et al.
2005]. Examples for uses of light fields to solve problems in graph-
ics and vision include synthetic aperture imaging [Isaksen et al.
2000], segmentation [Hog et al. 2016], saliency detection [Li et al.
2014], multi-object detection [Pei et al. 2012], and visual odome-
try [Dansereau et al. 2011]. Wu et al. [2017] provides a recent and
detailed review for light fields.
Many graphics applications can potentially benefit from light

field segmentation. 3D reconstruction from multiple frames [Yücer
et al. 2016] requires a light field segmentation as input. 4D segmen-
tation can be considered as a low level clustering method to facil-
itate light field video compression [Miandji et al. 2019]. For tomo-
graphic applications, 4D segmentation can be a benefit for multi-
frame super resolution [Zang et al. 2018a], moreover, dynamic re-
construction [Zang et al. 2018b, 2019] could reduce computational
primitive to accelerate its speed or refine reconstruction details by
separating data into small full 4D segmentation.
The parallax information in light fields implicitly encodes 3D

scene information as well as object scene position, making it highly
suitable for more robustly solving challenging segmentation cases,
e.g., occlusion, foreground-background similarity, and so forth. How-
ever, light fields not only provide new cues, but they also bring new
challenges in terms of computation time and storage cost. Due to
redundant image view information, loading and processing light
field data requires large computational and memory resources.
In this paper, we explore the way to utilize redundant angular

view information and higher dimensional representations in the
light field image domain, and proposed a submodular objective func-
tion to solve the 4D light field segmentation problem. A small sam-
ple of our results is shown in Fig. 1.

Specifically, our contributions are as follows:

• We expand traditional color and texture appearance terms to
also account for depth consistency and align region bound-
aries with occlusion edges.
• We introduce a new prior on Epipolar Plane Images that en-
courages view consistency of the segmentation, i.e. that the
same object point remains assigned to the same region as the
viewpoint changes.

• The segmentation method is formulated as the maximization
of a graph entropy on an undirected weighted graph in the
4D light field domain. We formulate the segmentation prob-
lem as splitting a graph into several subgraphs to obtain a
higher entropy rate, where each subgraph is a segmentation.
This produces a segmentation hierarchy which avoids exper-
imentation with different segmentation parameters.
• Since this is a submodular problem, a greedy heuristic opti-
mization scheme can guarantee a bound of ( 12 ) on estimat-
ing a globally optimal solution [Liu et al. 2011, 2014], with
a computational complexity of O(N logN ) and a memory
complexity of O(N ).

2 RELATED WORK
In this section, we give brief reviews for 2D, video, and 4D light
field segmentation.

Image Segmentation. In general, image segmentation utilizes ob-
ject priors to split image pixels into several non-overlapping re-
gions. There are several main classes of methods to solve this prob-
lem. We only provide a terse overview and refer the interested
reader to David et al. [2018] for more comparisons of 2D segmenta-
tion methods. Graph-based methods construct a graph to describe
the similarity of neighboring pixels [Felzenszwalb andHuttenlocher
2004] or to find a uniform disjoint pixel set [Liu et al. 2011]. Paris
and Durand [2007] use Morse theory to interpret the mean shift as
a topological decomposition into density modes, which then gen-
erates hierarchy of regions. Edge-based methods utilize an edge
detector as a cue for where to place region boundaries [Arbelaez
et al. 2011]. The assumption behind edge-based methods is that ob-
jects have strong edges surrounding them. However, this assump-
tion sometimes leads to over-segmentation and tends to fail when
the object blends into the background. Region-based methods try
to find segmentations with similar statistical properties, e.g., color
or other statistical attributes [Van den Bergh et al. 2012], [Chen
et al. 2017]. SLIC [Achanta et al. 2012] is one of the most famous
superpixel methods, which adopts k-means clustering using color
and spatial position as features, and they adopt the mean of feature
space to describe the region property. To liberate the user from tun-
ing superpixel size and number, Achanta et al. [2018] proposed a
method to automatically adapt to the local texture and scale of an
image.

Video Segmentation. Video segmentation also has a long tradi-
tion in the research community. Due to the additional temporal di-
mension, video segmentation has additional cues, such as motion,
disparity, frame-coherence, which can be applied to handle more
complex cases. For example, Grundmann et al. [2010] proposed
an efficient and scalable method by first over-segmenting a volu-
metric video graph into spatial and temporal 3D superpixels, and
then iteratively merging these. Ayvaci and Soatto [2012] described
a video segmentation method that separates surfaces in the scene
that are partially surrounded by integrating appearance and mo-
tion into the objective function. Chen et al. [2017] simultaneously
predicts pixel-wise object segmentation and optical flow in videos
that based on a fully convolutional network and a FlowNet model.
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Wang et al. [2015b] solves video segmentation with a saliency ap-
proach by considering two discriminative visual features: spatial
edges and temporal motion boundaries as indicators of foreground
object locations.

Light Field Segmentation. While video segmentation is able to uti-
lize extra information over 2D image segmentation, as discussed
above, this information is not very structured – videos can exhibit
complex patterns of different object and camera motions. On the
other hand, 4D light fields provide parallax from multiple views
for a stationary scene. The highly structured parallax information
alsomakes it easier to analyze angular structures spanningmultiple
views. Xu et al. [2015] proposed a transparent object segmentation
by utilizing consistency and distortion on 4D light fields. Yücer et
al. [2016] present a 3D reconstruction algorithm to automatically
segment a static foreground object from a highly cluttered back-
ground using a hand-held camera. This method uses the coherence
of data in the light field to reveal extra structure. Hao et al. [2017]
proposed a very efficient 4D light field superpixel method that con-
siders the invariance to refocusing. However, their method requires
extra depth information as input. It also still has difficulties when
background and foreground objects share similar textures, or when
the reflectance of an object is non-Lambertian. Hog et al. [2016]
proposed a novel graph representation for interactive light field
segmentation with a human in the loop. The graph structure ex-
ploits redundancy in the ray space in order to reduce computational
primitives. Later, Hog et al. [2017] proposed an automatic light field
segmentation by clustering super-rays and light ray bundles. The
clustering metric relies on spatial, angular and color distance, to
alignmultiple view points. Extra sparse view disparity estimation is
utilized for more accurate ray alignment. Wanner et al. [2013] also
proposed a ray based segmentation method to solve the multi-label
segmentation problem using a variational framework. Mihara et
al. [2016] proposed a learning-based light ray detection method by
utilizing appearance and disparity cues, and then adopted a graph-
cut framework to solve segmentation.
Our core method can be seen as an extension of the 2D image

segmentation of Liu et al [2011] to 4D light fields, with additional
energy terms that utilize geometric structure in the higher dimen-
sional space.While our method takes an initial depth estimate as an
input (in our implementation, this depth estimate is generated by
the method of Tao et al. [2013]), our light field segmentation model
does not make a strong assumptions on light ray constancy or EPI
constancy, which does not holdwhen occlusion occurs. Aswe show
in Section 6, this approach results in significantly improved view
consistency, as well as better alignment of the segmentation re-
gions with object boundaries compared state of the art methods.
Finally, we also significantly improve compute time and memory
consumption of submodular segmentation frameworks like Liu et
al [2011], as well as introduce a hierarchical version of this frame-
work that minimizes iterative parameter adjustments.

3 PRELIMINARIES
In the following we briefly summarize relevant concepts for our
work and introduce notation used throughout the paper.

3.1 Light Fields
Throughout thiswork, we denote 4D light fields asL(x,y,u,v), where
(u,v) can be interpreted as the coordinates of a view point and (x,y)
as the 2D image coordinates on a focus plane located at unit dis-
tance from the view point plane (see Fig. 2).

Fig. 2. Diagram of light field geometry and notation used throughout the
paper. The (u , v) plane contains the view points, while the (x , y) plane at
unit distance is the canonical focus plane of the light field. The light field
can be refocused to a different plane (x ′, y′) at distance α according to
Eqn. 1.

Light Field Refocusing. In a refocusing operation, the light field is
re-parameterized for a different location α of the (x,y) plane. This
re-parameterization step can be expressed as a counter-clockwise
shear of the Epipolar Plane Images (EPIs) [Ng et al. 2005;Wang et al.
2015a]:

Lα (x ′,y′,u,v) = L(u + x ′ − u
α
,v +

y′ −v
α
,u,v). (1)

View plane (u,v) and synthetic view plane (u ′,v ′) are actually co-
located in our setting, since only the refocus plane moves while
(u ′,v ′) is fixed in Fig. 2. We use same coordinates system as Ng et
al. [2005] for light field refocusing.

Light Field Slicing. For our segmentation method, we analyze 2D
slices of clusters that emerge when fixing two of the light field
parameters. We denote these slices of the light field domain as,
Lx ,y (u,v),Lu ,v (x,y),Lx ,u (y,v), andLy,v (x,u). Note thatLu ,v (x,y)
corresponds to a perspective image, while Lx ,u (y,v) and Ly,v (x,u)
respectively denote the horizontal and vertical EPIs.

3.2 Light Field Graphs and Submodular Functions
Graph Structure. Wedenote a graph on a light field asG = (V, E),

whereV = {vi |i = 1, . . . ,N } is the vertex set, which is composed
of a regularly sampled grid of pointsv in the 4D ray space, i.e. each
node in the graph corresponds to one ray. The edges e ∈ E connect
the immediate neighbors along all four dimensions of the light field
and also include a self-loop connecting each ray to itself. Also see
Fig. 3(left).

The edge weight represents an affinity between vertices, and is
a function w : E → R+ ∪ {0}. Moreover, a disjoint division of the
vertex set V forms a graph partition S = {s1, s2, . . . , sk }, where i
is the partition index. Our goal is to select a subset of edges A ⊆
E such that the resulting graph (V,A) consists of K connected
components (i.e., K regions), i.e. A is missing all edges that cross
regions.

In analogy to light field slicing operators defined above, we also
define slices of the clusters, sx ,yk , su ,vk , sx ,uk , sy,vk .
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Submodular functions. A submodular function is a set function
F : 2V → R that has diminishing returns property, i.e.,

F (A ∪ {a1}) − F (A) ≥ F (A ∪ {a1,a2}) − F (A ∪ {a2}), (2)

where A is a set and a1,a2 < A. This property can be utilized as an
efficient way to greedily optimize the objective function by finding
the element with maximal energy gain. This guarantees a (1 − 1

e )-
approximation of the global optimum [Krause and Golovin 2014].

Entropy rate of a random walk on a weighted graph. Consider a
graph G = (V, E) that has N vertices {vi |i = 1, . . . ,N } and edge
weightswi , j ≥ 0. A random walk starting from an initial vertex to
other vertices in the graph can be described by a sequence of ver-
tices {Xt |t ∈ {1, . . . ,N }}. Given the current position vi , the next
position vj is chosen according to the weight of edges that con-
nected to the vertexvi , with transition probabilities pi , j =

wi , j∑
k wi ,k

.
The stationary distribution µP = µ is given by

µ = (µ1, . . . , µN )T = (
w1

w
, . . . ,

wN
w
)T , (3)

wherewi =
∑
k wi ,k andw =

∑
i wi [Cover and Thomas 2006].

The entropy rate of a randomwalk on G = (V, E) can be written
as a set function:

H (E) = −
∑
i

µi
∑
j
pi , j log(pi , j ), (4)

where log refers to the logarithm with base 2.
Similar to Liu et al. [2011], the transition probability of the seg-

mented graph G = (V,A) is defined as:

pi , j =


wi , j
wi
, if i , j and ei , j ∈ A,

0, if i , j and ei , j < A,
1 −

∑
k :ei ,k ∈A wi ,k

wi
if i = j.

(5)

4 LIGHT FIELD SEGMENTATION MODEL
Like 2D image segmentationmethods, light field segmentation should
produce clusters with consistent colors and textures. The clusters
should be well shaped, and of similar size. In addition, however, we
can define several additional desired properties that are specific to
light field segmentation and can be used to obtain superior results:

(1) Depth-Awareness: should be able to separate objects with
similar appearance according to scene depth.

(2) Occlusion-Awareness: clusters should have sharp edges at
occlusion boundaries.

(3) View Consistency: the clusters should be stable and consis-
tent under changes in view points.

Our segmentation method maximizes an objective function of
the form

E(A) = A(A) + λV (A) + βC(A) + γS(A), (6)

whereA(A) is an occlusion and depth aware appearance term,V (A)
encourages view consistency, C(A) regularizes the spatial shape,
and S(A) encourages similarly sized clusters.
The four terms are defined in detail in the following subsections.

Each term is monotonic and submodular, and therefore E(A) can
be maximized by an efficient greedy scheme.

Fig. 3. An illustration of our two-stage appearance model. Left: at the first
stage, we construct a graph on a regular grid of 4D ray space, where the ap-
pearance weight for edges is simply determined by the color of individual
rays. Right: when the total number of clusters is reduced beyond a thresh-
old (e.g., 2 times of spatial resolution), the appearance weight is jointly
determined by ray intensity and each clusters’ intensity histogram. More-
over, we re-initialize all the unselected edge weights when activating the
second stage.

4.1 Occlusion- and Depth-aware Appearance Term
In light field segmentation, refocused depth can be a good indica-
tor to handle strong texture and isolated objects that are placed at
different scene depth. Moreover, occlusion boundaries can also pre-
serve sharp edges for segmentation.

Our edge weight function combines the above information, and
is defined as

wi , j =
wa
i , j +w

d
i , j

1 + kwo
i , j
, (7)

where i and j represent neighboring rays in the 4D ray space, wa

is an appearance weight, wd a depth weight, and wo an occlusion
weight. These three individual weights are defined below. Fig. 3 il-
lustrates our graph structure over the ray space in flat land. In 4D,
the nodes are connected along all 4 dimensions, x,y,u, and v . Ac-
cording to Eqn. 7, pixel and local histogram features determine edge
weight calculation which shows on the right of Fig. 3.

With these edge weights we can define the transition probabili-
ties pi , j as in Eqn. 5 and the graph entropy H (A) as in Eqn. 4. The
first term of our objective function is given as

A(A) = H (A). (8)
Since the entropy rate of a random walk on the graph is a mono-

tonically increasing submodular function [Liu et al. 2011, 2014], the
inclusion of any unselected edge will lead to an increase of the en-
tropy on the graph. However, this increase is lower when selecting
edges from the set of remaining edges due to the diminishing return
property.

AppearanceWeight. Theappearanceweightwa measures the sim-
ilarity in appearance between two rays using an appearance func-
tion D(.):

wa
i , j = exp(−D(i, j)

2σ2
), (9)

with
D(i, j) = ∥ f (i) − f (j)∥22 + η∥hist(s(i)) − hist(s(j))∥

2
2 , (10)

Here, the first term simply compares the colors of rays i and j. The
second term is a texture feature in the form of a color histogram for
the two clusters s(i) and s(j).The parameterηweights these two dis-
tance terms. We use two different values for η: for small clusters,
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the number of rays in the cluster is insufficient for obtaining ro-
bust histogram statistics, so we set η = 0. For larger clusters (more
than 2 wide in both x and y) we set η > 0 to enable region and tex-
ture descriptors. This term uses Lab space for color and histogram
comparisons.

Depth Weight. The depth weightwd encourages that rays which
intersect the scene at similar depths are placed into the same clus-
ter:

wd
i , j = exp(−

∥d(i) − d(j)∥22
2σ2

). (11)

Here, d(i) is a depth estimate for each ray i , which we obtain
as follows. We first shear the light field to refocus it at different
candidate depths. We then use refocused depth cues from Tao et
al. [2013] to determine for each (x,y) location the candidate depth
that brings it into the best focus. Finally, we propagate this informa-
tion back to 4D by backward shearing the result onto the original
light field (see Fig. 4).

(a) Central View (b) Forward Shear (c) EPIs Depth Metric

(d) Backward Shear (e) View Depth (f) Depth EPIs

Fig. 4. Computing the 4D depth cost by forward and backward shearing.
4(a) shows a central view and EPIs. We first apply forward shearing (i.e., re-
focusing) on the original light field 4(b) with a set of candidate depths, and
calculate the light field depth metric for each 4D ray element 4(c). We then
apply backward shearing of the 4D depth metric 4(d) to the original light
field parameterization. Finally, the 4D refocused depth can be estimated
by finding the minimum of the per-element depth metric from different
shearing parameters. 4(e) and 4(f) shows the central view of 4D refocused
depth and EPIs.

Occlusion Weight. Finally, our graph weights consider depth dis-
continuities as well as intensity edges. Specifically, we define

wo
i , j = |od (i) · oL(i) − od (j) · oL(j)|. (12)

Here, oL(.) is simply an edge detector [Dollár and Zitnick 2015]
applied to each (x,y) slice, while od is computed based on 4D gra-
dient magnitude of depth estimates from above:

od =

{
1 ;

| |∇d | |
d ≥ 0.8,

0 ; else
(13)

The depth threshold here is quite conservative, since it it intended
mainly to detect occlusion events.

4.2 View Consistency Term

(a) Original (b) Depth

(c) View Consistency Case (d) Non View Consistency Case

Fig. 5. An illustration of view consistency. (a) and (b) are the example cases
of RGB synthetic scene and depth scene. (c) and (d) show two possible seg-
mentations in light field EPIs slices. (c) preserves a good View Consistency
compared to (d). (d) has a disconnected light ray; the same object point is
assigned to different clusters in different views. This is discouraged by our
view consistency term.

A light field segmentation should be view consistent, i.e. under
gradual changes in viewpoint, the 2D slice of the segmentation in
the projected image should not change abruptly; the same object
points should be grouped into the same cluster under all views.This
means that the segmentation should be encouraged to cut along
the spatial (x,y) dimensions instead of the (u,v) dimensions for
clusters with similar appearance. Fig. 5 illustrates this principle: as-
suming that regions s2 and s3 have similar appearance and scene
depth, we prefer the left segmentation from Fig. 5(c) over the one
from Fig. 5(d).

Fig. 6 shows an example comparison of the view consistency
term.The “thin and tall” case better preserves view consistency and
has a higher numeric values than “fat and short” case, which leads
to a higher priority to be selected in submodular optimization. To
measure the view consistency of a 4D region, we propose a new
metric based on the entropy rate of 2D (x,y) slices for a fixed view
point, su ,vk (x,y). The proposed view consistency constraint favors
segmentations where these slices are of uniform size and shape as
the view point changes. Specifically, we define the distribution of
2D segmentation slice as follows,

psk (u,v) =
|su ,vk |
|sk |
, (14)

where | · | represents elements number.Then, view consistency term
is defined as the entropy rate of psk (u,v), i.e.

V (A) = −
∑
k

µsk

∑
u ,v

psk (u,v) logpsk (u,v). (15)
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(a) VC Constraint = 1.536 (b) VC Constraint = 0.719

Fig. 6. An illustration of the Light Field view-consistency constraint.
Fig. 6(a) and Fig. 6(b) shows two different light field segmentations with
similar size, 4D pixels will be projected to 2D angular coordinates and count
the occurrence. (a) (”thin and tall”) has amore uniform angular distribution
compared to (b) (”fat and short”), thus, (a) has a higher photo-consistency
objective value.

4.3 Spatial Compactness Term
As we have just seen, elongated cluster shapes along the u and v
directions are desired in the EPI. However, the cluster shape in
the spatial x,y slices is preferred to be round and compact with-
out complicated boundaries. This is in agreement with the goals of
traditional 2D image segmentationmethods. Again wemeasure the
spatial shape regularization by the entropy rate of spatial distribu-
tion of clusters. We first project our cluster elements onto the x and
y axes, and then measure the entropy rate of the cluster in terms
of x and y coordinates. To provide an intuition of our spatial shape
regularization, we illustrate the entropy rate of several shapes in
Fig. 7. To measure the entropy rate of spatial distribution, we count

(a) C=15.34 (b) C=14.85 (c) C=14.71 (d) C=15.17

Fig. 7. Illustration of the light field spatial compactness term. We project
a region onto the (x,y)-coordinates and enhance spatial compactness by
maximizing the entropy rate of the spatial shape distribution. 7(a) shows
that the square shape of segmentation has a higher objective than the other
shapes, and is thus preferred by our system.

coordinate histogram of x andy by fixing remaining coordinates as

psk (y,u,v) =
|sy,u ,vk |
|sk |

, psk (x,u,v) =
|sx ,u ,vk |
|sk |

, (16)

where psk (y,u,v) and psk (x,u,v) are sk ’s slices along the x and
y coordinates respectively. The shape regularization terms for the
two axes are then

Cx (A) = −
∑
k

µsk

∑
y,u ,v

psk (y,u,v) logpsk (y,u,v), (17)

Cy (A) = −
∑
k

µsk

∑
x ,u ,v

psk (x,u,v) logpsk (x,u,v). (18)

The overall shape regularization is the sum of these two terms:
C(A) = Cx (A) +Cx (A). (19)

4.4 Size Balancing Term
Finally, we follow [Liu et al. 2011] and regularize cluster size as
an additional constraint. The entropy rate of the balancing term is
given by

S(A) = −
∑
k

µk log(µk ) − |S|. (20)

When maximized, this term encourages equally sized clusters.
The stationary distribution of 2D slice is

µsk =
|sk |
|V| . (21)

5 LARGE-SCALE HIERARCHICAL SUBMODULAR
OPTIMIZATION

Performing standard submodular optimization on a light field graph
will lead to a large-scale submodular optimization problem. Cur-
rently available light field data will generate graphs with up to
109 edges, while 2D images only have 107 edges due to the more
densely connected graph structure in 4D vs 2D. We develop several
strategies to deal with large-scale optimization problems involving
submodular functions. These include a disjoint tree as a hierarchi-
cal way of re-generating a specific number of regions, as well as a
cache system to efficiently search, modify, merge large-scale trees.
These innovations will be useful for other large-scale submodular
optimization problems including for videos and volumes.

Hierarchical Segmentation with the Disjoint Tree. One challenge
for segmentation problems is always to guess the correct number
of regions. One solution is to generate a hierarchical segmentation,
and let user adjust the number of regions by selecting the appropri-
ate level in the hierarchy. We design the disjoint tree to record the
tree merging procedure. The advantage of the disjoint tree is that it
does not require a large amount of memory to store a segmentation
hierarchy, but can recover any number of segmentations by simply
providing the sequence of merged trees without having to recom-
pute the segmentations.The disjoint tree is a variation of a standard
disjoint set, which has a tree-like structure that preserves informa-
tion about the order in which elements are added. A disjoint tree
is a set of binary trees. Merging two trees requires connecting the
root node of one tree to the empty child node of another tree, and
saving the root id of the merged tree. Submodular optimization in-
volves selecting the optimal trees to merge until there is only one
tree left. Given the final tree and the merged root node order, we
can search and decompose the tree node reversely, so that any num-
ber of trees (regions) can be recovered. This is illustrated in Fig. 8.

Max Heap and Partial Update Scheme. For each iteration of Alg. 1,
only the edge with maximal energy gain is selected and the energy
gain of the rest of edges will be updated. Naive implementation
will cost O(|E|) iterations to find an optimal edge, and O(|E|)) iter-
ations to update the rest of the edges, i.e. the computational com-
plexity will be O(|E|2). This is too expensive for light fields, which
have tens of millions of pixels. Fortunately, submodular functions
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Fig. 8. An illustration of merging in the disjoint tree and recovering hierarchy of segmentation by providing merged region sequences. Ti is one binary tree
of the disjoint tree with root node id i . When an optimal edge is selected (e58, e56, e23) for each iteration, two connected binary trees (T5, T7), (T3, T7), (T1,
T3) will be merged respectively. The merged binary tree forms a sequence {T5,T7,T1 }, i.e., K = {. . . , 5, 7, 1}. The hierarchy of segmentation regions can
be recovered by disconnecting the disjoint tree in reverse order. For example, if we disconnect tree nodes 1 from its parent, the disjoint tree in (D) will roll
back to (C), and disconnect nodes 7 and its parent, disjoint tree in (C) will roll back to (B) and so on. Any possible number of regions can be recovered given
the final disjoint tree and the sequence of merges.

have a diminishing return property; the energy gain for each edge
will never be increased during the iteration.This property enables a
lazy, greedy method [Leskovec et al. 2007; Liu et al. 2011] for quick
search and update. The basic idea is to adopt a max heap structure
to determine the optimal edge by popping the top element of the
heap, and only partially recalculating the elements near the top of
the heap until the max heap requirements are again satisfied. How-
ever, a naive implementation of max heap may lead to a worst case
of O(|E|2 log |E |) when the binary max heap becomes unbalanced.
The updatingmax heap will cost up to O(log |E |), depending on the
tree depth. In a small dataset, max heap will only update several
times in general, and therefore E is generally negligible. However,
in large-scale data such as in light fields, max heap updates may
happen many times for each iteration. We make improvements in
twoways: First, the max heap will be re-initialized several times via
fully updating all tree nodes and re-balancing to avoid the worst
case. Therefore, the actual update times will be limited strictly. Sec-
ond, our method will drop all redundant edges (edges that connect
the same subgraph) in the disjoint-tree. Therefore, the size of max
heap will reduce dramatically and will decrease accordingly.

Efficient Tree Operation Using Caching. Our submodular function
is optimized with a disjoint tree and a max heap, therefore, the opti-
mization process involves tree node search, add, modify, find oper-
ations. For large tree sizes, the naive implementation of tree opera-
tions will lead to system stack overflow due to the highly recursive
nature of themethod. In our implementation, tree operations are re-
cursion free and apply Breadth-First-Search or Depth-First-Search
to implement the various tree operation. Moreover, we design a
cache system to search for empty child nodes: instead of searching
the tree from the root node, candidate empty child nodes can be
directly popped from a cache queue.

Memory-Efficient Greedy Heuristic Optimization. The aim of our
proposed optimization scheme is tomaximize our submodular func-
tion and preserve the hierarchical structure of the segmentation.
The submodularity of the objective function leads to a good guaran-
tee for estimating the global optimum by greedy optimization [Liu
et al. 2011]. The algorithm starts with an empty set (i.e., A = ∅),
each vertex is totally disconnected, and then iteratively finds the
largest energy gain edge. An edge that forms a cycle on the edge
set A is not ignored immediately. We maintain disjoint pixels set

by disjoint tree, if there is a selected edge to be added to the edge
set A, this procedure will lead to the merging of two binary trees
(no cycle constraint). We also record the order of the binary tree
merging processK = {Kt |t = 1, . . . , |V|}. The iteration converges
when there is only one binary tree in the disjoint tree. The desired
number of regions K is obtained by splitting nodes in the disjoint
tree in reverse order to form new binary trees. The pseudo code is
shown in Alg. 1. Optimizing entropy rates on graphs with submod-
ular functions is a standard optimization tool. Our work improves
the traditional pipeline by jointly generating hierarchy and objec-
tive update scheme, caching system for large-scale tree operation,
which makes large-scale tree-based submodular optimization to be
memory tractable and computationally efficient.

Data: 4D light field L(x , y, u , v)
Result: Disjoint Tree T , order set K
Initialize:
T = {Ti |i = 1, . . . , |V | },
A = ∅, U ← E, t = 0, K = ∅.
while U , ∅ do

e∗ = argmax
e∈U

E(A ∪ {e }) − E(A)).

if e∗ connects Ti and Tj (i , j) then
A ← A ∪ {e∗ }
Ti ← Ti + Tj (+ stands for tree merge operator)
Kt+1 = j , t = t + 1

end
U ← U − {e∗ }

end
Algorithm 1: 4D Light Field Segmentation Algorithm

6 EXPERIMENTS
In this section, we show the visual results and quantitative com-
parison for 4D segmentations of both real and synthetic light fields.
Please refer to supplementalmaterial for additional results and com-
parisons.

Datasets. In the experiment, wemainly use several publicly avail-
able datasets: the 4DLight FieldDataset [Honauer et al. 2016], the
CVPG Dataset [Zhu et al. 2017], as well as the Stanford Light
Field Archive [Dansereau et al. 2019]. For the 4D Light Field
Dataset, we select data with a segmentation mask for evaluation.
Of these, the first twomainly provide synthetic datasets with highly
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Fig. 9. Quantitative comparison of our method with four competing methods: SLIC [Achanta et al. 2012], LFSP [Zhu et al. 2017], Super-Rays [Hog et al. 2017]
and VideoSeg [Grundmann et al. 2010]. The different comparisonmetrics are shown from left to right: Boundary Recall, Under-Segmentation Error, Achievable
Segmentation Accuracy, and our View Similarity metric. Each graph shows the progression of each metric as the number of regions in the segmentation is
increased. Different datasets are shown from top to bottom: CVPG dataset, 4D Light Field Dataset, and our own dataset.

accurate ground truth for disparity and segmentations. The Stan-
ford Light Field Archive contains examples of very high angu-
lar resolution light fields, where it is a challenge for segmentation
methods to preserve view consistency. Also, system issues such
as memory efficiency are highlighted by this dataset. The CVPG
Light Field Dataset [Zhu et al. 2017] provides 6 synthetic light
field datasets with ground truth disparity and 4D segmentation la-
bels. We augment these standard datasets with our own dataset,
captured using a first generation Lytro camera.This dataset includes
a manually labeled ground truth 4D segmentation and will be made
public.

Parameter Settings. In the experiments, we set weight parame-
ters in our objective functions weight as λ = 0.1, β = 0.1, γ =
[0.5, 100], σ = 0.005, k = 0.5, η = 0.5.

6.1 Quantitative Evaluation
Evaluation Metric. To evaluate segmentation performance, we

employwidely used 2D segmentation evaluationmetrics: boundary
recall (BR), under-segmentation error (UE), and achievable segmen-
tation accuracy (ASA), which are all standard metrics in 2D image
segmentation [Achanta et al. 2012; Liu et al. 2014; Zhu et al. 2017].
To evaluate the view consistency of the light field segmentation
for different views, we design a new View Similarity (VS) metric
as follows. Given a segmentation, we determine for each region sk
and each pair of views (u,v) and (u ′,v ′), the region slices su ,vk and

su
′
,v
′

k . These are then aligned in image space for maximum pixel
overlap, before the metric is computed as

VS =
1

Nvs

∑
k

∑
u′

∑
v ′

∑
u

∑
v

|su
′
,v
′

k ∩ su ,vk |

|su
′
,v ′

k ∪ su ,vk |
, (22)

where ∩ and ∪ are the union and intersection of the pixel regions
after finding the best alignment between the slices by 2D translation
in image space, Nvs = |S| ·NA ·NA, and NA is the number of views
in the light field.

Quantitative results. Figure 9 shows the quantitative comparison
of our method on the three datasets that have ground truth infor-
mation. The comparison methods are VideoSeg [Grundmann et al.
2010], a state-of the art video segmentation method, and finally
LFSP [Zhu et al. 2017] and Super-Rays [Hog et al. 2017], two re-
cent automatic light field segmentation methods. Note that we do
not compare against other light field segmentation methods that
require manual user input. More detail on the chosen comparison
methods is provided in the next section. Of the four metrics, lower
values are better for UE while for the other three metrics (BR, ASA,
and VS), higher values are better. The results clearly demonstrate
that our method outperforms the comparison methods on all met-
rics. Compared to image and video segmentationmethods, the light
fieldmethods (LFSP, Super-Rays, and ours) are able to use the richer
information of light fields for better segmentation results. At the
same time, our submodular energy term proves more effective than
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the competing Light field approaches. Please refer to the supple-
ment for additional quantitative results on other datasets. We use
the implementation of themetrics from the segmentation toolkit [Stutz
et al. 2018].
Due to the hierarchical nature of our light field segmentation

we only need to run the method once on each light field and then
can extract the segmentations with different numbers of regions
to produce the data in Fig. 9. All other methods need to be run
many times with adjusted parameters to produce the same data. A
single execution takes on average 4 min for LFSP, 2 min for SLIC,
and 20min for VideoSeg, and 1min for Super-Rays. More details of
computational time comparison is shown in Table 1.This compares
to 5 min for the full hierarchical segmentation in our approach.

Trade-off Between Region Number and Shape. The graphs in Fig. 9
show evaluation metrics against the number of regions. Our evalu-
ation covers different possible applications of segmentation: super-
pixels, smoothing and denoising [Bi et al. 2015], semantic segmenta-
tion [Fulkerson et al. 2009] etc. For semantic object segmentation, a
small number of regions is preferable (100 ∼ 200) to capture small
objects or components. For smoothing or editing tasks, fine image
structure should be preserved, therefore, a large number of regions
(> 200) is better in general. Overall, our method is the most com-
petitive algorithm against other state-of-the arts in the major range
of region number Fig. 9.
Earlier methods (e.g., SLIC, Videoseg) have a worse performance

when only requiring less than 200 regions, because those meth-
ods generate very compact regions with simple boundaries, which
means that boundary adherence is poor for segmentations with a
small number of regions. LFSP and Super-Rays are two state-of-the-
art competitors, these two methods share similar performance and
visual behavior due to use SLIC-like data term (color and spatial
distance) with extra LF-based constraint. Like SLIC, the compact
region shape is not suitable for faithfully representing objects in
a light field with a small number of regions. The view consistency
metric is not significantly affected by the region number, and Super-
rays, LFSP and ourmethod achieve a better performance than those
traditional 2D segmentation methods. Our method shows superior
performance against all state-of-the-art methods numerically and
visually due to our approach of directly optimizing a full 4D graph.

Computation Time. Ourmethod emphasizes reconstruction qual-
ity over speed, and as such cannot match the speed of some ex-
isting methods, especially those optimized for GPU computation.
Nonetheless, the comparison in Table 1 shows that the execution
times our method is within a small factor of the times for other
CPU methods. All experiments were conducted on a workstation
with an Intel Xeon E5-2687 CPU (3.0GHz) and 192 GB RAM. In
evaluating the the computational efficiency of the algorithms, we
also note that the all comparison methods produce a single segmen-
tation would in many practical settings need to be re-run multiple
times to determine the appropriate number of clusters for a given
light field. By comparison, our hierarchical approach produces all
possible segmentation granularities in a single run within the time
listed in the table, thus significantly reducing the amount of time
needed to conduct experiments.

Table 1. Compute time comparison (Angular Resolution is 9×9).

Method 378×378 375×540 512×512
SLIC 4D 102s 124s 180s
Videoseg ~900s ~1020s -
LFSP 142s 162s 192s
Super-Rays 34s 42s 61s
Our 177s 289s 434s

6.2 Visual Comparison
Wevisually compare our light field segmentationmethodwith other
state-of-the art alternatives.We perform comparisons on three datasets:
4D Light FieldDataset, Stanford Light FieldArchive, and our dataset.
We strongly encourage the reader to also refer to the video and sup-
plemental material for more dynamic visualizations.

Visual 4D Segmentation Comparison. Fig. 10 and Fig. 11 show vi-
sual comparisons with state-of-the-art 2D, video, and light field
segmentation methods. We simply rearrange light field to form a
sequence of views, and then apply a video segmentation method to
process the light field sequence. VideoSeg [Grundmann et al. 2010]
is a popular video segmentation method that utilizes appearance
similarity and optical flow to group small regions. Video segmenta-
tion exploits inter-frame optical flow and appearance similarity to
separate objects that contain motion in the video sequence. How-
ever, in light field sequence, optical flow on different view points
may contain discontinuities, especially when light field sequence
change view from right to left or down to up, this may affect the
grouping of small regions. Moreover, a light field has comparatively
low variance in terms the disparity, therefore, traditional optical
flow methods may not have obvious flow output from neighboring
view points. LFSP [Zhu et al. 2017] builds a 4D segmentation in a
SLIC-like fashion, with added view invariance constraints. Its per-
formance is similar to SLIC in the spatial dimensions. Since LFSP
requires a depth map, we first compute depth the same way as in
Section 4, and provide it as input to LFSP. LFSP relied rather heav-
ily on this depth map, while our method builds the segmentation
from full 4D ray space (not from grouping superpixels). The core
difference between the LFSP [Zhu et al. 2017]’s view consistency
and ours is that our term can guarantee a good error bound and
that it is a dense pixelwise constraint on region shape to preserve
view consistency in EPIs and spatial slices, while theirs can only
apply a constraint on the segmentation centroid, which is sparse
and lacks control over region shape.

Super-Rays [Hog et al. 2017]’s code is not public available, we re-
implemented their work.Their pipeline is quite fast, stable and sim-
ple. Since super-rays metric is also based on SLIC-like spatial and
color distance, this metric tends to generate very regularly shaped
spatial regions, at the expense of alignment with boundary features,
which becomes particularly apparent when segmenting fine spatial
features (also see Fig. 12). As a result, our method is more robust
to mistakes in depth map, and achieves better view consistency in
4D domain. By jointly considering appearance, depth, occlusion as
well as the prior knowledge of 4D segmentation shape, we obtain
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(a) VideoSeg (b) LFSP (c) Super-Rays (d) Our method

Fig. 10. Visual comparison with state-of-the-art methods on our real scene dataset. We visualize 3 different alternative methods: VideoSeg[Grundmann et al.
2010], LFSP[Zhu et al. 2017] and Super-Rays[Hog et al. 2017]. To emphasize the view consistency of segmentation, we also show the EPIs on vertical and
horizontal directions (e.g., RED, GREEN, BLUE dash line and EPIs with same color rect). The number of regions are around 100 for all the alternatives.

better robustness in complex scenes and gain the ability to find fine
structures in the light field.

Depth Refinement. Segmentation can be utilized as extra cue to
refine depth boundary, interior noisy region and depth holes. Fig. 12
illustrates the depth refinement results by state-of-the-art LF seg-
mentation methods and our proposed methods. We simply utilize
median depth as output value, and then adopt light field refocused
depth estimation [Wang et al. 2015a] as raw depth input. When
scenes light field contain small structures (first row) or lens glare
(second row), traditional depth metrics will tend to fail on such
cases. Fortunately, our light field segmentation was able to utilize
view consistency constraints to remove short-term lens flashing
and preserve fine structure of tiny scene, e.g., black holes in depth
map (second row) can be fixed by our segmentation methods.

Hierarchical Segmentation. Thehierarchical aspect of the segmen-
tation allows us to very efficiently adjust the number of regions
without having to re-run the segmentation. One straightforward

application is simply to minimize times for experimentation. In
our experience, the results in many previous image/video/LF works
require extensive experiments parameter adjustments to produce
good results, and only the time to produce the final result is actu-
ally reported. Our approach can overcome this issue. Examples of
this adjustment are shown in the video and supplementary materi-
als.

6.3 Ablation Study
We conduct several ablation experiments to test our objective com-
ponents: ablation study by canceling objective terms, ablation study
by varying weights, and quantitative evaluation. We simply cancel-
ing objective weights (i.e., λ, β , γ = 0) to show the actual behavior
of individual terms, which shown in Fig. 13(a). The example fig-
ure contains smooth region (sky), complex texture (grass) and fine
structure. Our full method with all objective components can han-
dle the above cases, and canceling view consistency terms will lead
to a large amount of inconsistent small regions Fig. 14, which may
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Fig. 11. Additional visual results. From left to right, we show original views, segmentation contour, random color and mean color within segmentations with
EPIs.

(a) Original (b) Input Depth (c) LFSP (d) Super-Rays (e) our

Fig. 12. Comparison of depth maps encoded in the segmentations created by different methods. (a) Original central scene view. (b) Input raw depth for our
method. Depth results for (c) LFSP [Zhu et al. 2017], (d) Super-Rays [Hog et al. 2017], and (e) our method. Our method shows significantly better preservation
of thin structures and straight edges in both example scenes, demonstrating a better alignment of segmentation boundaries with scene structure. The red
crop regions in both scenes show that our method manages to refine and correct errors in the initial depth map. In the top scene, a region of the sky is
erroneously merged with the flower, while in the bottom example, lens flare creates an erroneous floating structure in the original depth estimates. Both of
these artifacts are corrected by our segmentation method.

disappear in other view. Fig. 13(c) shows that the removal of spatial
compactness term will lead to a irregular shape, especially on the
smooth region. Fig. 13(d) illustrates that size balancing term regu-
larize the imbalanced size of region, canceling it will generate tiny
small regions.
Fig. 14 varies view consistency weight λ, small inconsistency

may appear in some of the views without view consistency con-
straints, and the increasing of λ significantly removes those small
noise regions. Fig. 15 compares different spatial compactnessweights
β , the increasing of β provides higher strength of spatial regulariza-
tion to separate smooth regions (e.g., sky), which mainly generates

region with concentrating spatial distribution. Fig. 16 shows the re-
sults of varying γ to generate different granularity of region.Quan-
titative results of the ablation study are shown in Fig. 17, showing
the different quality metrics for different combinations of parame-
ters λ and β . Overall, a fine-tuned γ can improve BR, UE and ASA,
since this term provides extra prior to remove false segmentation
between multiple frames. β only regularize shape and generates
visually better results (especially in non-boundary or non-texture
parts), but does not significantly change evaluation metrics.
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(a) Full Method (b) λ = 0

(c) β = 0 (d) γ = 0

Fig. 13. Ablation Test. (a) example results with all objectives. (b) the re-
moval of view consistency term. (c) the removal of spatial compactness
term. (d) the removal of size balancing term.

(a) λ = 0.001 (b) λ = 0.05 (c) λ = 0.1

Fig. 14. Ablation test by varying λ for view consistency test. (a) Grass re-
gions contain small inconsistency due to a low λ. (b) increasing λ for incon-
sistency removal. (c) higher strength of inconsistency removal.

(a) β = 0.001 (b) β = 0.01 (c) β = 0.1

Fig. 15. Ablation test by varying β for spatial shape regularization. (a) seg-
mentation will not be a central symmetry shape with a small β in smooth
region (i.e., sky). (b) increasing β . (c) regular and symmetry shape of region
in smooth and edgeless regions with a higher β .

6.4 Failure Cases and Limitations
We show failure cases ofwide baseline and non-Lambertian in Fig. 18
with color EPIs. Certain types of light field can lead to a failure of
our method, e.g., wide baseline light fields captured by captures by
camera arrays. In this scenario, the EPI is severely undersampled, so
that the tracking of view consistency can fail. Non-Lambertian re-
flectance causes several challenges, including non-uniform appear-
ance, which affects the initial depth estimation, but also the view

(a) γ = 1 (b) γ = 5 (c) γ = 10

Fig. 16. Ablation test by varying γ for elements number in each regions. (a)
small value of γ will have a more flexible segmentation but tends to ignore
small region (b) when increasing γ , the region size will tend to be uniform
and balanced.

Fig. 17. Ablation test for the quantitative evaluation of varying γ , λ and β .
We set parameters pairs as the combination three weight choices γ ={0.1, 1,
5, 10, 100}, λ={0.001, 0.01, 0.05, 0.1, 1}, β = {0.001, 0.01, 0.05, 0.1, 1}, region
number is 100.

consistency term. Our method can find the correct edge of object,
however the segmentation within the object can be fail since the
appearance is not consistent under view point changes. Another
limitation of our method comes from submodular optimization, the
weights (i.e., λ, β , γ ) for each objective components need to be nor-
malized, therefore, these parameters will be affected by extrema in
objective values due to noise or light exposure.

7 APPLICATIONS
Segmentation is a starting point for many processes in image ma-
nipulation and computer vision. In the following we highlight sev-
eral applications of our light field segmentation.

7.1 User-guided Object Segmentation.
Like most 2D and video segmentation methods, our method seg-
ments the light field into regions of consistent appearance, but not
into semantic objects. However with a simple user interface, we
can can manually select multiple regions that comprise a single ob-
ject. Examples of this user-guided object segmentation are shown
in Fig. 19.
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Fig. 18. Failure case illustration. First Row:we test ourmethod inwide base-
line cases of light field, segmentation tends to inconsistent due to large view
point changes. Second Row: the visual results of non-Lambertian cases. Our
method discovers correct object boundaries, but mistakenly separates ob-
jects due to incorrect depth matches.

Fig. 19. User-guided segmentation. Regions comprising a single object are
selected by a user. The regions themselves are not manually altered.

7.2 Light Field Flattening
Image flattening refers to the suppression of texture detail while
preserving strong scene edges and overall image structure. Here,
we extend an existing 2D method [Bi et al. 2015] to 4D. Specifically,
we take into consideration the L1 sparsity in spatial slices, angular
patches as well as the 4D light field segmentation, and jointly mini-
mize the pixel variation and approximation error as detailed in the
following.

Spatial Term. fi is the Lab feature vector of pixel pi .

El =
∑
i

∑
pj ∈Nh (pi )

wi j ∥L(i) − L(j)∥1, (23)

where Nh (pi ) is a spatial local h × h patch. wi j is the affinity be-
tween pixel pi and pj . Here, we simply use Euclidean distance with
a normalization function.

Angular Term. We prefer a uniform intensity values over simple
angular patches of the light field, and smooth exposure variation in
different spatial slices. Similar to Eqn. 23, we formulate our angular

flattening term as

Ea =
∑
i

∑
pj ∈Na (pi )

wi j ∥L(i) − L(j)∥1, (24)

where Napi is the angular patch that pi lies in.

Segmentation Term. The segmentation provides extra cues to in-
clude more pixels for avoiding the influence of shading, reflectance
or noise.

Es =
∑
pi ∈sk

∑
pj ∈sk

wi j ∥L(i) − L(j)∥1, (25)

Data Fidelity Term. To avoid trivial solution, smoothed light field
should be similar to original light field,

Ed =
∑
i
∥L(i) − Lini (i)∥2, (26)

where Lini is original light field data.The overall objective function
is the sum of those terms,

E = Ed + αEl + βEa + γEs , (27)
where α , β ,γ are weight parameters. Fig. 20 shows the results of the
light field segmentation, where we then utilize the segmentation
cue to remove fine details and preserve the main edges of the light
field. In the example of Fig. 21, we visualize our light field segmen-
tation, edge detection results and pencil sketching. We first utilize
our light field segmentation for removing fine details of light field.
Then, we apply conventional edge detection method [Dollár and
Zitnick 2015] on smoothed light field to capture main edge. Light
field segmentation provide a closure and compact region cues from
light field flattening, yields a larger range smoothing. The removal
of details texture shows light field abstractionwithmore clean edge,
which forms a art-composition style of pencil sketching.

(a) Original (b) LF L1 Flattening

Fig. 20. Light field flattening results.

7.3 User-Guided Refocus Enhancement
A well-known and often used feature of light fields is the ability to
refocus at different scene depths.Themain target at a user-specified
depth is sharp, while other depth ranges will be blurry. However,
the adjustment of refocus depth is limited by the physical aperture
of the light field camera, and therefore the level of blur cannot ex-
ceed a certain value.We combine light field segmentationwith refo-
cusing, and propose a way to enhance the blur, which is described
as
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(a) Original LF (b) LF Segmentation (c) LF Smoothing

(d) Angular Patch (e) Pencil Sketching (f) Abstraction

Fig. 21. The illustration of light field flattening and pencil sketching. (a) is
original light field. (b) is our light field segmentation, we visualize segmen-
tation as mean color of regions. (c) is angular patch of smoothed light field.
(d) example light field angular patch of red rect in (a). (e) pencil sketch-
ing rendering on smoothed light field. (f) light field abstraction and edge
enhancement.

Lα (x ′,y′,u,v) = L(u + x ′ − u
α(x ′,y′) ,v +

y′ −v
α(x ′,y′) ,u,v), (28)

α(x ′,y′) = α ×m(x ′,y′), (29)

m(x ′,y′) =
{

1, if (x ′,y′) is masked,
k, if (x ′,y′) is not masked. (30)

where m(x,y) is a mask generated by user. For user-specified ob-
jects, we apply the original refocus function, for the background,
we enhance the refocus ratio by multiplying extra parameters k .
Fig. 22 shows our user-guided refocusing results. Our method pro-
vides more blur for background when comparing the naive refocus-
ing method.

(a) Naive Refocus (b) User-guided Refocus

Fig. 22. The illustration of user-guided refocus. (a) Naive refocus, (b) user
selection of light field segmentation.

8 CONCLUSION
In this paper, we solve the 4D light field segmentation problem us-
ing a new depth and occlusion consistent appearance term in com-
bination with a novel view consistency term. Crucially, the result-
ing energy function is submodular, and can therefore be optimized
efficiently using a greedy heuristic approach. We combine this new
light field segmentation concept with several innovations to solve
submodular optimization problems on very large graphs hierarchi-
cally, and very efficiently in both memory and time. In the future,
we will explore other applications of light field segmentation, as
well as new uses of the hierarchical submodular optimization.
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