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Abstract

In this paper, we investigate the challenging long-term

visual tracking problem and its implementation on Un-

manned Aerial Vehicles (UAVs). By exploiting the inher-

ent correlation between Frequency tracker And Spatial de-

tector, we propose a novel tracking algorithm, denoted as

FAST. As can be theoretically and analytically shown, the

superior performance of FAST originates from: 1) robust-

ness – by transforming from frequency tracker to spatial de-

tector, FAST owns comprehensive detector to cover conse-

quential temporal variance/invariance information that in-

herently retained in tracker; 2) efficiency – the coarse-to-

fine redetection scheme avoids the training of extra classifi-

er and exhaustive search of location and scale. Experiments

testified on tracking benchmarks demonstrate the impres-

sive performance of FAST. In particular, we successfully im-

plement FAST on quadrotor platform to tackle with indoor

and outdoor practical scenarios, achieving real-time, au-

tomatic, smooth, and long-term target following on UAVs.

1. Introduction

With their extremely high flexibility, portable size and

fast speed, UAVs have emerged as a rising star among mo-

bile robots in recent years. Endowing the UAVs with in-

telligent vision based algorithms is in urgent demand, and

one of the most fundamental intelligent features apparent-

ly lies in automatic target following via a long-term visual

tracking method so as to push consequential applications of

UAVs far beyond amusement to surveillance [5], augment-

ed reality [10], behavior modeling [23] etc.

Contrary to the GPS-based target following on UAVs,

which requires the target to wear an extra GPS-equipped

device for communication [26] and is incapable in GPS-

denied environments (e.g., indoors, urban areas), we pro-
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Figure 1. Our on-board platform: DJI Matrice 100 with Intel NUC

(i5-4520u), DJI Guidance, DJI Zenmuse X3 gimbal and monocular

camera.

pose a more universal and flexible vision based tracking

method, which is successfully implemented on a DJI drone

platform (Fig. 1) to perform on-board long-term target fol-

lowing for both indoor and outdoor practical scenarios.

Given the fact that long term tracking remains a chal-

lenging problem due to complex factors (e.g., deformation,

occlusion, etc.) in real application scenarios, a recovery

mechanism should be integrated into the framework to re-

start tracking when severe failure occurs. However, exist-

ing works pay limited attention to redetection by roughly

training an extra classifier for detection together with per-

forming an exhaustive search of location and scale, thereby

ignoring the important temporal context and being far from

efficient [17, 20, 30, 37]. Thus, in this paper we investigate

the questions: 1) Is the conventional way that trains an extra

classifier for redetection really essential, and 2) if tracking

by detection is well recognized, can detection by tracking

work? Interestingly, as will be theoretically and analytical-

ly shown, an online training tracking model can be regarded

as a well-trained classifier for redetection, implying the in-

herent connection between tracker and detector. Thus we

can answer ‘NO’ and ‘YES’ to these two questions.

Standing on our revelation, we present a novel long-term

visual tracking scheme via Frequency And Spatial Transfor-

mation (denoted as FAST) that owns adaptive model updat-

ing and a failure recovery mechanism. Specifically, FAST

adopts a frequency domain correlation filter as the base
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tracker, whose online training model is transformed to the

spatial domain as the detecting model. To resolve the prob-

lem that redetection schemes often suffer exhaustive search

of location and scale, a coarse-to-fine two-stage redetection

scheme is also proposed.

In summary, the technical contributions of this paper are:

1) we explore the inherent connection between the frequen-

cy domain tracker and spatial domain detector, showing that

the tracking model can be severed as a well-trained clas-

sifier for redetection; 2)we also propose a generic coarse-

to-find redetection scheme that contains a generic objec-

t proposal for coarse selection and discriminative detector

for find detection, which effectively avoids the exhaustive

search of location and scale; 3) we also propose an efficien-

t framework for the practical target following problems on

UAVs in GPS-denied environments, which integrates target

3D localization, self-localization, flight control, etc.

2. Related Work

In this section, we review the state-of-the-art target fol-

lowing schemes on UAVs and visual tracking algorithms.

2.1. Target Following on UAVs

Tracking and detection play important roles in numer-

ous applications in robotics. Many navigation and follow-

ing problems require accurate location estimation as a con-

trol signal for posture adjustment (e.g., aerial refueling [36],

tracking [26, 28, 40], navigation [31], pedestrian tracking

[29]). Serving as the most widely used tool for object local-

ization, the GPS-based method requires GPS-equipped de-

vices to receive the locating signal. Despite the requirement

of an extra device, the performance of GPS-based method

tends to be attenuated or incapable in GPS-denied environ-

ment(e.g., indoors and in urban areas).

Computer vision technologies, which can be treated as

a powerful sensor to perceive the world around us, bring

more intelligence to robots. [36] trained a linear svm for de-

tecting and tracking a drogue object of aerial refueling via

simple LBP feature. [29] adopts Aggregated Channel Fea-

tures (ACF) for detecting pedestrians and utilizes particle

filter for avoiding frequent detection. However, these meth-

ods are designed for a specific object category and require

offline training, which go against generic object following.

[13] adopts correlation filter for generic object tracking, but

a simple short-term tracker can not effectively handle com-

plex environments. [24] and [25] adopt openTLD [17] for

target tracking and detection on a UAV platform, however,

the TLD approach can not achieve comparable performance

to state-of-the-art tracking algorithms. In contrast to previ-

ous schemes, we propose a novel long-term visual tracking

scheme that achieves a good balance of effectiveness and

efficiency for target following on UAVs.

2.2. Visual Tracking Algorithm

Recently, many novel visual tracking approaches have

been proposed and achieve significant improvements; how-

ever, existing algorithms are generally deficient in solving

the real-time long-term target following problems on UAVs.

Early approaches of template based tracking work by

finding an optimal patch to describe appearance via selec-

tively updating template [21], abd multiple key frames [27].

Although template based methods are robust to appear-

ance variation [6], they usually do not fully utilize previ-

ous object information, and lose most of the object struc-

ture in previous features. Sparse representation is anoth-

er approach to find sparse appearance patterns [19, 32, 39].

However, these methods are computationally intensive and

do not fully utilize correlation among frames.

Tracking-by-detection methods adopt a detection

method to discriminate the object and background from

sequential images, where early approaches exploited time-

invariant information of tracking the target via an online

training model, e.g., SVM [2,4,14] and boosting [3,11,12].

These methods directly adopt detection a framework to

solve the tracking problem, and generally fail to utilize the

temporal context.

Correlation filter [16] emerges as one of the most suc-

cessful tracking frameworks due to its efficiency, accura-

cy and simplicity. Many state-of-art trackers are built upon

correlation filter, e.g., [7–9]. The exceptional performance

gain lies in that it fully utilizes current frame information

(by circular shift) with a dense search. However, its on-

line update scheme tends to tie to short-term object appear-

ance, and forget the former information gradually. Thus, it

is extremely powerful in short-term tracking, but is relative-

ly vulnerable to appearance variation.

For improving the robustness of tracking, [17] propose

TLD that decomposes long-term tracking into three main

components: tracking, learning and detection. To deal with

long-term out-of-view, occlusion, [35] address the problem

as detecting occlusion and variation of view-point by com-

bining occlusion and motion reasoning. [37] online trains

multiple experts, and selects the best expert to correct the

current tracking result, which is effective to protect track-

ing model from drifting. [20] propose a long-term tracking

method by using PSR to estimate failure, and train an extra

classifier for redetection.

In contrast to previous methods, we exploit the model

relationship in frequency and spatial domain, and propose

a novel long-term tracking scheme via utilizing the curren-

t tracking model as a well-trained detector, which is free

from training extra classifier. Our method is further imple-

mented on a DJI Quadrotor platform, achieving excellent

performance of target following on UAVs.
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Figure 2. Overview of our proposed long-term tracking algorithm via frequency and spatial transformation: FAST.

3. Proposed Frequency and Spatial Transfor-

mation for Tracking (FAST)

As shown in Fig. 2, FAST can be divided into two mod-

ules: the frequency domain tracking module serves to esti-

mate the translation and scale of target from previous ob-

servations and the spatial domain redetection module aim-

s at estimating tracking quality (e.g., success, failure) and

searching for the reappearing target when severe tracking

failure occurs.

3.1. Frequency Domain Discriminative Model

Given the graceful mathematical expression and efficient

implementation of correlation filter [16], we take correla-

tion filter as our discriminative model, which trains a track-

ing model in frequency domain without the requirement of

extracting the positive and negative examples, and updates

via simple incremental learning. Specifically, we consider

all previous frames to train our discriminative model (de-

noted as w) via ridge regression as follows∗,

min
w

p
∑

k=1

αk

∑

i,j

|〈xk
ij ,w〉 − yij |

2 + λ‖w‖2, (1)

where k denotes the frame index, p is the number of to-

tal frames and αk is the weight for k-th frame. x
k
ij is

cyclic shift of the feature map (of size W ×H) for (i, j) ∈
{0, · · · ,W} × {0, · · · , H} on k-th frame and yij is the

Gaussian-shaped regression target. 〈·〉 is dot product op-

eration and λ > 0 is the regulation parameter. Eqn. (1) can

be solved and accelerated in frequency domain, so that

W =

p
∑

k=1

αkXk ⊙Yk

p
∑

k=1

αk(Xk ⊙Xk + λ)

, (2)

∗For ease of presentation, we define x as a single channel feature,

which can be extended to multi-channel features easily. The lowercase

matrix corresponds to the spatial domain, and the capital-letter matrix cor-

responds to the frequency domain.

where W = F(w), F denotes the Fast Fourier Transform

(FFT) operation, ⊙ is the Hadamard product, · is the conju-

gate operation, and the division is element-wise. Discrimi-

native model W can be optimally updated as follows,

Np = (1− η)Np−1 + ηXp ⊙Yp,

Dp = (1− η)Dp−1 + η(Xp ⊙Xp + λ),
(3)

where the discriminative model is represented by W = N

D
,

η ∈ [0, 1] is the learning rate, and αk = η(1− η)p−k.

R denotes the correlation map of feature patch Z and

tracking model W in frequency domain, given by

R = W ⊙ Z. (4)

Taking inverse FFT of R, we have r = F−1(R) – the cor-

relation map in spatial domain (regression result for each

cyclic shift of patch), whose peak exactly indicates the most

confident target position for estimating translation.

For handling scale variation, similar to [7], we initialize

scale filter by resizing the initial tracking patch to a fixed

size, where scale filter can be trained via Eqn. (2). Then

the scale pyramids are built around the tracking target after

translation estimation, and the scale with the maximum cor-

relation is selected as the current tracking scale. The update

scheme of scale filter is similar to Eqn. (3).

3.2. Spatial Domain Coarsetofine Redetection

As reviewed in the related work, regardless of the out-

standing performance, a robust long-term tracking scheme

is expected to have its own recovery mechanism, i.e., esti-

mating tracking state and redetection if needed. Serving for

failure detection so as to enable redetection, we estimate

tracking state by Peak-to-Sidelobe Ratio (PSR) τ = r∗−µ
σ

,

where r∗ is the maximal value on the correlation map r, and

we define the sidelobe as the N×N image patch (N = 10).

µ and σ are the mean and standard deviation of the sidelobe

respectively. Given τ , we simply define three tracking states
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based on two predefined thresholds τl and τh for failure de-

tection: success, borderline, and fail. If state is success, cur-

rent model is updated by averaging new information; and if

the state is borderline, tracking model will not update since

new information may introduce a drift problem; and if the

state is failure, redetection start. Contrary to most tracking

methods that pay limited attention to redetection by roughly

training an extra classifier as detector followed by exhaus-

tive search of location and scale, which apparently neglect-

s the important temporal context and is far from efficient,

we propose a coarse-to-fine two stage redetection scheme

to search for reappearing object as follows.

Object Proposal for Coarse Selection As object may

reappear in various locations and scales after tracking fail-

ure, an exhaustive search by sliding window is incompe-

tent in predicting the significant scale variation efficiently.

Generic object proposal [41], however, impliedly deals with

the scales problem by providing a small set of object can-

didates with numerous aspect ratios and sizes without the

bias of categories. Simply adopting generic object propos-

al leads to redundancy that most bounding boxes are less

likely to bound the tracking object due to the lack of target-

dependant information, e.g., color distribution, aspect ratio

and size. To handle scale variation while further reducing

computational burden, target-related features are utilized

for bias selection given the fact that reappearing object may

vary in location and scale but rarely in aspect ratio or color

distribution.

We generate initial object proposals in concert with as-

pect ratio of initial tracking target, and calculate objectness

score via the method in [41]. For each initial bounding box,

we adjust the target rectangle until maximal objectness s-

core is obtained. In this refinement stage, object proposal

will be adjusted to local optimal position to bound the na-

ture object, as well as consider the aspect ratio of possible

candidates. We rank object proposals via considering the

color similarity and objectness score as follows:

Sc = Scolor ∗ Sobj , (5)

where Scolor is calculated by the Euclidean distance of his-

togram between initial frame and object proposal patch.

While coarse selection via generic object proposal suc-

ceeds constraining the candidates to a certain amount ef-

ficiently, it is essential to further design fine selection to

achieve the prime target candidate. In our method, only top

10 object proposals are selected for the next stage detection.

Discriminative Detector for Fine Selection An intuitive

solution to detect the prime target candidate is training an

extra classifier via extracting positive and negative samples

from previous frames [17, 20]. However, such a scheme

actually preserves invariant information of target and does

not explicitly carry temporal correlation, since it treats each

frame equally for training the classifier [22]. We further

find that 1) the tracking model inherently contains temporal

context for all of the previous frames and weighting by time

order, leading to the better description of the current object

appearance, 2) the analysis of redetection reveals that the

tracking model can serve as a discriminative detector for

redetection. We will elaborate these two claims in following

contents.

1) Tracking model inherently contains temporal context.

Recall that in Eqn. (3) the discriminative model W can be

optimally updated as

Np =
p
∑

k=1

η(1− η)p−k
Xk ⊙Yk,

Dp =
p
∑

k=1

η(1− η)p−k(Xk ⊙Xk + λ),
(6)

where Xk and Yk are k-th frame information. As we ex-

pected, the weighting term η(1 − η)p−k decreases as time

goes by for weighting the temporal information, implying

that correlation filter model inherently owns advantage to

reflect the temporal variation of the tracking object as well

as invariant information.

2) Tracking model can serve as a discriminative detector

for redetection. Recall that redetection can be modeled as

the correlation calculation between detection model w and

candidate patch z in spatial domain utilizing ridge regres-

sion model from Eqn. (1). It is known that Fourier trans-

form maps correlation in spatial domain to multiplication in

frequency domain, i.e.,

R = W ⊙ Z, (7)

where · denotes conjugate operation. Eqn. (7) is the formal

definition of correlation, which exactly resembles Eqn. (4)

but W requires conjugate operation. Correlation filter can

be updated optimally via Eqn. (3), we can directly adopt the

tracking model in frequency domain to calculate regression

result in spatial domain as follows:

ŵ = F−1(W). (8)

We evaluate the regression result between the spatial

model and candidates C – the candidate set after coarse se-

lection by object proposal (where all the selected candidates

are resized to fit the size of translation model) via

r̃ = 〈ŵ, c〉, c ∈ C. (9)

Simple dot-product between the candidate and transla-

tion model in spatial domain can approximate the correla-

tion of specific cyclic shift. Therefore, the optimal candi-

date (denoted as c∗) of reappearing target is determined via

c∗ = argmax
c∈C

〈ŵ, c〉. (10)
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Figure 3. The overall architecture of our method on DJI Matrice

100 platform. Guidance equipped with IMU and sonar provides

the altitude and speed of UAVs, camera acquires image data, NUC

is computational unit for processing image and return control sig-

nal, Lightbride communicates between aerial and ground station.

To ensure more robustness regarding the false alarm, we

also estimate the confidence of detection result via the PSR

measurement, and compute the correlation map in frequen-

cy domain via Eqn. (4) with new object position and scale.

The new position and scale are accepted under the case that

the PSR of new object position is larger than the prede-

fined threshold τh. In our simulation, the object propos-

al [41] reports a recall of 96%\87% at threshold of 0.5\0.7
for 1000 proposals on popular object detection benchmark

VOC2007, leading to high possibility of discovering reap-

peared object when it adopts object proposal for redetection.

Our model updates in the frequency domain, and is trans-

formed to the spatial domain by inverse FFT. Dot-product

operation is used for calculating the correlation of spatial

model and candidate. Candidate with maximal correlation

is accepted as the new tracking target if it satisfies the fail-

ure detection condition. Regarding the computational com-

plexity, directly calculating correlation for all candidates by

Eqn. 4 requires |C| FFTs, where |C| is the element number

of C. While the spatial detector merely requires one inverse

FFT. More comparisons of efficiency are reported in the ex-

periment section.

4. System Architecture

Our algorithm is implemented on the DJI Matrice 100

quadrotor platform (Fig. 1), where the video sequence is

given by a monocular camera, and all the on-board compu-

tations are processed on Intel NUC (i5-4520u). The Matrice

100 includes DJI Lightbridge – the high definition image

transmission system to enable initialization on the ground.

The overall system architecture is shown in Fig. 3, where

all the algorithms (Fig. 4) can run on NUC in real time.

Figure 4. The software pipeline of long-term visual tracking

scheme and flight control.

Initialization Recall that the images captured by the

monocular camera of UAV can be transmitted to ground ap-

p via Lightbridge expeditiously, we can then simply select

a point on the target that will be sent back to UAV immedi-

ately, with which, our on-board algorithm then identifies the

desired object shaped by rectangular bounding box. Specif-

ically, we use Edgebox [41] to return a set of object pro-

posals – well-organized bounding boxes that likely contain

objects. The proposals that contain a user-clicked point are

further averaged to assist initialization efficiently. Thus, it

is more efficient than manually drawing a rectangle for de-

sired object, and is more user-friendly as most users have

little sense on initializing a ‘good’ bounding box.

5. Target Position Estimation and Navigation

Given the tracking bounding box (2D), the distance es-

timation method proposed in this section serves to obtain

the 3D position (i.e., the relative orientation and distance

between the UAV and target) of target continuously and sta-

bly. We propose novel method to estimate distance between

target and UAVs under three assumptions: 1)object height

is relatively stable, e.g., rigid objects; 2) the roll angle for

camera is 0 (gimbal system has such guarantee); 3)UAV

height is available at initial stage by IMU.

Target Position Estimation Let us start the discussion

for the initialization stage as illustrated in Fig. 5; we de-

note
−→
T ,

−→
B as the top and bottom constrains of bounding

box in North-East-Down coordinate, i.e.,
−→
T and

−→
B are the

highest/lowest points of target respectively, and can be rep-
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Figure 5. Illustration of target position estimation at initialization

stage.
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where K is the intrinsic matrix of the camera, R is the cam-

era rotation, (ut, vt) and (ub, vb) represent the red dots in

Fig. 5 in the 2D image coordinate, which are the intersec-

tions of
−→
T and

−→
B on 2D image, giving the top and bottom

constrains of bounding box in 2D image, respectively.

Then, the distance between the target and UAV is given

by d0 = Pb

zb
×hc, the height of target is ho = hc−

zt
Pt

× d0,

where hc is the height of the UAV retrieved from IMU,

and ho is the height of object. Pb =
√

x2

b + y2b and

Pt =
√

x2
t + y2t are the projection length of

−→
B and

−→
T

on the ground, respectively. Given the distance and height

at initialization stage, for every upcoming frame that has a

bounding box, the distance between the target and UAV is

dt = ho/||

−→
T

Pt

−

−→
B

Pb

|| = ho ×
Pt

||
−→
T −

−→
B ||

(Pt ≈ Pb),

(13)

Note that after initialization, our system does not require the

tracking target to be on the ground or knowing the height of

UAV. This is especially valuable to the cases where target

object climbs up and moves down during tracking as well

as the height of UAV, since IMU may not be reliable when

the UAV flies over grasses or higher than 5 meters.

Flight Control With the estimated target position that s-

moothed by Kalman filter, the corresponding flight con-

trol in our system controls the UAV in at desired distance.

Specifically, the relative velocity of the target compared to

the drone is calculated, with which, the relative velocity of

the target compared to the ground is obtained by knowing

the velocity of the drone retrieved from IMU of the UAV.

After collecting the position and velocity of the target, a

PID controller is utilized to assure a safe distance between

the drone and target. In practice, instead of controlling the

drone both horizontally and vertically, our system controls

the gimbal’s yaw angle first and then controls the drone’s

yaw to follow the gimbal, i.e., to align the drone with the

gimbal’s yaw orientation. The reason lies in the fact that it

is more flexible for a drone to turn around than move left or

right due to the inertia. Thus, for most cases, the target is in

the center of the image, and the drone will smoothly slow

down and hover once the target is lost, and will react once

redetection is performed to identify the target again.

6. Experimental Results and Discussions

In this section, we first present extensive evaluations of

the proposed tracking algorithm FAST † and state-of-the-art

visual tracking methods. Then, we evaluate the implemen-

tation of FAST on the DJI UAV platform for both indoor and

outdoor scenarios from two aspects: target position estima-

tion and flight control. The video demonstration of our

algorithm and implementation are provided as supple-

mentary in https://youtu.be/akBddFrw6Nk.

Our work is implemented by C for UAV system with an

i5-4520u 1.6 GHz CPU and for simulation on PC with a

i3-2100 3.1 GHz CPU.

6.1. Evaluation of FAST on Tracking Benchmark

We mainly report our results on the popular benchmark

proposed by [34], which contains 50 sequences and is an-

notated with 11 attributes that indicate challenging types.

Several tracking algorithms treated as the state-of-the-art

methods include DSST [7], CSK [15], KCF [16], STC [38],

Struck [14], TLD [17], MEEM [37] and RPT [18]. All

the concerned methods are assessed by widely-used met-

rics [33]: Precision plot, which computes the percentage of

frames in which the estimated locations are within a given

threshold of the ground truth positions; Success plot, which

computes the percentage of frames in which the overlap be-

tween the estimated and ground truth bounding box is with-

in given thresholds. In particular, Distance Precision (DP)

at 20 pixels, and more challenging, at 10 pixels, and Over-

lap Success (OS) at an overlap threshold 0.5 and 0.7 are

discussed. Regarding Robustness evaluation, the metrics

includes: One Pass Evaluation (OPE) that starts tracking

at first frame; Temporal Robustness Evaluation (TRE) that

starts tracking at different frames; and Spatial Robustness

Evaluation (SRE) that starts tracking at different bounding

boxes with sight shifting or scaling, respectively.

†In our experiments, regularization parameter λ = 0.01 and learning

rate η = 0.025. The search of the tracking window size is two times that

of the target size. The number of scale search spaces is 33, and the scale

factor is 1.02. The thresholds for state estimation are τl = 8 and τh = 12.
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Figure 6. The evaluation of the precision plot and success plot with OPE, TRE and SRE measure for all 50 sequences. The concerned

stat-of-the-art methods include CSK [15], KCF [16], STC [38], Struck [14], TLD [17], MEEM [37], CN [9] and RPT [18]

In Table 1, we present the evaluations of DP, OS and

FPS. RPT [18] is considered to be state-of-the-art, and

achieves outstanding performance in DP=0.834/0.666 un-

der the thresholds 20px/10px, and OS=0.729/0.449 under

the thresholds 0.5/0.7. Our FAST shows a comparably su-

perior performance to the state-of-the-art, in terms of the

best DP of 0.909/0.785 under the distance thresholds of

20px/10px and the best OS of 0.863/0.632 under the overlap

threshold 0.5/0.7, respectively.

Algorithm
DP DP OS OS

FPS
(20px) (10px) (0.5) (0.7)

FAST 0.909 0.785 0.863 0.632 100.8

DSST [7] 0.762 0.645 0.704 0.546 37.4

CSK [15] 0.554 0.424 0.436 0.275 315.8

KCF [16] 0.753 0.621 0.620 0.388 161.2

STC [38] 0.554 0.433 0.377 0.199 72.2

Struck [14] 0.659 0.517 0.560 0.367 13.7

TLD [17] 0.613 0.464 0.529 0.298 29.9

CN [9] 0.629 0.499 0.495 0.302 109.2

RPT [18] 0.834 0.666 0.729 0.449 4.0

MEEM [37] 0.811 0.649 0.684 0.386 15.3

Table 1. Comparison with state-of-the-art in terms of the Distance

Precision (DP), Overlap Success (OS), and Frame Per Seconds (F-

PS). The best performance is highlighted in bold. We calculate the

average speed for FAST including tracking and detection; tracking

achieves approximately 100 fps and detection achieves approxi-

mately 120 fps for the C implementation.

In Fig. 6, we present the evaluation of OPE, TRE and

SRE in the precision plot and the success plot. The track-

ing methods are ranked based on the Area Under the Curve

(AUC). It can be shown that FAST (red curve) outperform-

s others in the precision plot of OPE, TRE, SRE and the

success plot of OPE, TRE and SRE. In particular, Fig. 7

presents the evaluation of four attributes that reflect chal-

lenges in different aspects: deformation, occlusion, out-of-

view and out-of-plane, where FAST achieves competitive

performance in both the precision plot and success plot.

In summary, FAST achieves stable and accurate transla-

tion/scale estimations that are robust to challenging factors.

It is also robust to the challenge cases in short-term tracking,

e.g., partial occlusion, illumination variation and deforma-

tion, due to the feature of estimating current tracking state

for adaptive model updating. FAST works well in the more

challenging cases of long-term tracking, e.g., out-of-view,

occlusion, deformation. Since our coarse-to-fine redetec-

tion module generates a detector by transforming the fre-

quency tracking model to the spatial domain, which large-

ly releases the burden of training extra classifier, and the

temporal information that is inherently retained in tracker

further improves redetection accuracy.

6.2. Implementation of FAST on UAV Platform

We further assess the performance of FAST on a UAV

platform for both indoor and outdoor scenarios.

To objectively evaluate the accuracy of on-board target

position estimation, we conduct an indoor experiment by

fixing the target while controlling the UAV manually to get

plenty of distance between the target and the UAV. The es-
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Figure 7. The evaluation of the precision plot and the success plot for all 50 sequences on selected attributes. The selected attributes

include deformation, occlusion, out-of-view and out-of-plane rotation.

(a) X (forward - backward) (b) Y (left - right)

Figure 8. Outdoor experiment for comparing tracking accuracy;

the red curve is the FAST result, and the blue curve is Vicon result.

timated target location in the X (forward-backward) and Y

(left-right) directions using our method is shown in Fig. 8-

red curve. Note that we directly show the raw data without

smoothing filter, thus the red curve appears noisy due to the

inherent noise of the UAV hovering and the flight control.

With the markers in both the target and the UAV, the Vicon

motion tracking system [1] provides an accurate measure-

ment, which serves as ground truth data, as shown by the

blue curve. In general, the error of the target position esti-

mation is smaller than 0.5m, enabling the UAV to act sensi-

tively. One may notice that the estimation in the Y direction

tends to be less noisy since we maintain the bounding box

of the target in the center of image, even under different s-

cales. Y is still stable while X has to be adjusted frequently.

Our implementation is further validated in the outdoor

environment under the case that the UAV automatically op-

erates the flight control without human interference, and the

desired distance between the UAV and the target is set to be

5 meters. The performance of our system (red curve) is

compared with the GPS data (blue curve) in Fig. 9, where

Figure 9. Outdoor experiments for comparing tracking accuracy;

the red curve is the FAST result, and the blue curve is GPS result.

the Y axis denotes the straight-line distance in meters, and

the X axis denotes frame numbers. It can be shown that our

system is capable of maintaining desired distance between

the UAV and the target stably. The GPS varies significantly

during the starting period, as it takes time to achieve accu-

rate localization at the beginning.

7. Conclusion

In this paper, we propose a novel long-term visual track-

ing algorithm FAST and implement it on a DJI UAV plat-

form. FAST estimates the translation and scale via correla-

tion filter theory and obtains a well-trained object classifier

(serving for redetection) via a transforming tracking model

from the frequency domain to the spatial domain. Extensive

experiments show that FAST achieves competitive perfor-

mance in terms of widely-used evaluation metrics, as well

as robust, smooth, long-term target following on UAVs.
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